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RÉSUMÉ 

Les études récentes ont montré qu'il y aurait une forte influence de la matière organique 
dissoute (MOD) sur la dynamique des écosystèmes aquatiques. En particulier, certaines 
catégories de MOD ont des propriétés antialgues, susceptibles de réduire la biomasse des 
espèces de cyanobactéries. Nous avons testé les effets de différentes catégories de matières 
organiques dissoutes, ainsi que leurs interactions avec la lumière et les nutriments, sur la 
composition des communautés de phytoplancton lors d'incubations in situ (7 jours). La 
composition initiale en phytoplancton et les caractéristiques de la matière organique dissoute 
ont été des facteurs déterminants pour les modifications de la structure des communautés de 
phytoplancton, lors des incubations. Les résultats de notre étude montrent que la croissance 
du phytoplancton était fortement dépendante de la disponibilité en nutriments dans la baie 
Missisquoi en 2007, et que les concentrés d'extrait d'orge et de matière organique naturelle 
peuvent inhiber la croissance du phytoplancton, particulièrement des espèces de 
cyanobactéries. 

Mots-clés: Matière organique dissoute (MOD), cyanobactérie, phytoplancton, incubations, 
Lac Champlain. 



ABSTRACT
 

Recent research shows that there is a strong influence of dissolved organic matter (DOM) in 
the dynamics of aquatic ecosystems. In particular, sorne types of DOM have antialgal 
properties that can decrease the biomass of cyanobacterial species. We tested the effect of 
different types of dissolved organic matter, and their interaction with light and nutrients, on 
the composition of the phytoplankton community in field incubation experiments (7 days). 
Initial phytoplankton composition and characteristics of dissolved organic matter added were 
determinant in changes in taxonomical community structure of samples in the incubation 
experiments. Our results demonstrate that phytoplankton growth was strongly dependent on 
the availability of nutrients in Missisquoi Bay in 2007, and that barley extract and natural 
organic matter concentrate may inhibit the growth of phytoplankton, particularly 
Cyanobacterial species. 

Key words: Dissolved organic matter (DOM), cyanobacteria, incubations, phytoplankton, 
Lake Champlain. 



CHAPTER 1: INTRODUCTION 

1.1. Characteristics of dissolved organic matter in freshwater systems 

There is an increased interest in the role of dissolved organic matter (DOM) in aquatic 

ecosystems (Kosakowska et al. 2007; Steinberg 2008; Stets et al. 2008). DOM can be an 

important element in physical, chemical, biochemical and whole lake ecosystem processes. 

Evidence has shown that dissolved organic matter (DOM), sometimes considered as an inert 

substance in the water, can have a major influence on ecological dynamics at different trophic 

levels. 

Sources of lake water DOM are diverse. DOM comes principally from degradation products 

of vegetal material in the watershed soils on terrestrial environment. This fraction is termed 

allochthonous to reflect its origin exterior to the lake system. The remaining fraction is 

produced within the lake (autochthonous) from algal and aquatic plant excretion and other 

fOffi1s of aquatic organism metabolism. Allochthonous DOM consists principally of humic 

substances (HS) or fui vic acid-like material (Larson 1978; Thurman et al. 1981; Jones 1992). 

This material is polar, straw-coloured, and principally composed of organic acids that are 

derived from soil humus and terrestrial and aquatic plants and generally comprise one-third to 

one-half of the dissolved organic carbon (DOC) in water. Aquatic fui vic acids derived from 

plant hUer and soils generally contain a significant content of aromatic carbon (25%-30% of 

total carbon), reflecting the contribution of lignin degradation to their fomlation (Thurman et 

al. 1981; Brooks et al. 2007). Quinones were characterized by electrochemical studies as the 

dominant redox-active moieties associated with DOM (Nuffi1i et al. 2002). Ali these 

substances are characterized by important acid-base properties as weil as metal and nutrient 

binding and cOl11plexing abihties (Thumlan et al. 1981; De Haan 1992). These properties 

confer an active role on DOM in aquatic chemical, physical and biological dynanlics (Wetzel 

1992). 
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There is a strong correlation between DOM and water color (Cuthbert et al. 1992). For 

example, humic and fulvic acids strongly absorb the UV part (200-365 nm) of the light 

spectrum (De Haan 1992). Because of their 10wer aromaticity, microbially derived fu1vic 

acids absorb less visible and ultra-violet lighl than plant- or soil-derived fulvic acid 

(McKnight et al. 2001). Differences in DOM composition reflected in light absorption 

patterns can be helpfu1 to understand its principal origin, composition and influence on food 

webs. 

The origin and composition of different sorts of DOM influence its eco10gical role (Amon et 

al. 1996; Wehr et al. 1998; Cromp et al. 2003; Kosakowska el al. 2007) ln sorne cases, the 

fraction of the DOC pool that can be effectively used by microorganisms in aquatic 

environments changes in relation with particular DOM characteristics (Del Giorgio et al. 

1994). On one hand, DOM may counteracl eutrophication, for example by binding phosphate 

(De Haan 1992) . On the other, humic substances (HS) as part of DOM might contribute to 

eutrophication, being mineralized more rapidly in eutrophic waters in the presence of labile 

organic substrates, and increased levels of inorganic nutrients. 

Different fractions of DOM have different biodegradabilily properties. These properties 

depend on abiotic factors such as light climate, pH and chemical composition of the water. In 

this way, alterations at the global scale in the environment can influence biodegradability. 

Increased UV radiation intensity from natural sunlight may stimulate photodegradation 

(Geller 1985), that can render humic substances (HS) more susceptible to microbial 

degradation, liberate cofactors for melabolism or affect the binding and release of 

biologically important substances from aquatic humic substances as nutrients modifying its 

availability (De Haan 1992; Wehr et al. 1998). By surface special properties (Campbell et al. 

1997) humic substances can acl as modulators of the bioavailability of key nutrients through 

the formation of binding complexes of trace metals such Cu (Brooks et al. 2007). 

Complexation or solubilization of pesticides and hydrocarbons in the aqueous environment 

with HS (Thurman et al. 1981), or formation of complexes between humic and fulvic organic 

acids and extracellular enzymes (Wetzel 1992) are the best known effect of HS on 
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phosphorus availabili ty by binding and sequestering phosphate in the presence of fenic iron 

(De Haan 1992) 

1.2. Effects of DOM 00 phytoplankton 

DOM can contain alellopathic substances that can be easily released or transformed by 

interaction \Vith environmental factors such as light or PH or by bacterial or chemical 

degradation (Jasser 1995: Gross et al. 1996: Nakai et al. 2000: [(orner ct al. 2002: Gross ct al. 

20(3) Polyphenolic compounds originating from decomposition of wetland and littoral 

macrophytes, can result in major modifications of nutricnt availabilit~ and metabolic 

pathways in aquatic ecosystems (Wetzel 1992). Polyphenolic-enzyme complexes can be 

fonncd. which modify or inhlbit enzyme activitics. Thcsc compounds can subsequcntiy be 

fracturcd by mild UV radiation, as would be found in fresh waters, reconstituting the enzyme 

activity. Flirthennore. activated oxygen products of photochemical reaction of humic 

substances can directly inducc damage to intracellular catalase and act as important factor for 

the ccli l}'sis as showed for Anabaena circinalis (Sun et aL 2(06). 

Humic substances (HS) are active environmenta! chemicals. Damages caused by sevcral fish 

pathogens, such as bacteria and parasites, can bc repaired more quickly in the prescnee of 

HS. Somc parasites - mainly fungi - appear to be directly affected by HS (Meinelt et al. 

20(8). Thc quantitativc cxpression of thesc effects dcpends on the concentrations of quinoid 

structures in the humic materials (Steinberg et al. 2001: Steinberg et al. 2(03). Quinones cali 

interfcre with photos}lllhetic electron transport, an cflèct for which cyanobactcrial species 

can bc more sensitive. Hlimic substances have the potcntial to acl as cleclron acccplors for 

microbial respiration. provoking the saille inhibitory mode of action on photoS}11lhesizers as 

does the allelopathic compound tellimagrandin Il (Steinberg cl al. 2006: Prokhotskaya et al. 

2007: Steinberg 20(8). 

Growth promotion as weil as growth inhibition of algae and bacteria create tTade-oŒs 

between specific and non-specific effects at different ccological levels (Steinberg et aL 2(01). 

Allochthonous DOM can act indirect!) by promoting the hetcrotrophic component of aquatic 
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ecosystems, leading to important changes in the principal energ)' pathway in lakes. DOM as 

direct carbon source in the food web can be selectively degraded by microbiota (bacteria) 

(Kirchman 1990: Jones 1992: Wetzel 1992: Del Giorgio et al. 1994: Lindell et al. 1995: Wehr 

et al 1998: Klug 2005: Steinberg et al. 200G) that becorne an important cornpetitor of 

phytoplankton for nutrients, expanding the size of the eITect of organic matter at different 

trophic levels (Carpenter et al. 1998). This process can be enhanced by photolytic activity of 

UV in DOM (Lindell et al. 1995: Wetzel et al. 1995: Moran et al. 1997: Obernosterer et al. 

1999: Maurice et al. 2(02) In addition, there can be established a new energ)' pathway From 

DOM to macrozooplanktoll via heterotrophic flagellates, and by the stimulus of mixotrophy 

or heterotrophy in sorne algal species (Jones 1992: Granéli et al. 1999: Tuchman et al. 2(06). 

Interaction of DOM with nutrients can have also a negatÎve effect in bacterial populations. 

For example, eutrophication leads to the dominance of cyanobacteria which are kno\\n to 

excrctc some compounds that can act as toxic substances with antimicrobial activity (De 

Haan 1992). Otller photoproducts formed (via solar radiation) From DOM (such as toxie 

gases) might inhibit bacterioplankton activity as weil (Wetzel 1992: Obernosterer et al. 

1999). 

Different relations have been studied in the interaction between DOM and phytoplankton. 

There is an important positive effect on phytoplankton growth owing to the nutrients 

assoeiated with DOM (Larson 1978: Klug 2002: Frost et al. 20(7) Autochthonous DOM can 

also promotc the growth of algae by regulation of inorganie nutrients, espeeially when 

phosphorus and hurnic substances are in excess (An'ola et al. 1996). There is also release of 

some growth promoting substances by microbial or photochemical processing of the DOM or 

by remineralization of nutrients b:'i bacteria using DOM (Granéli et al. 1999: Prokhotskaya et 

al. 2(07). Following DOM or nu trient addition total phytoplankton biovolume can vary and 

taxonomic composition is altered directl)' or indirectly via interaction with other groups 

(Arvola et al. 1996: Vinebrooke et al. 1998; Wehr et al. 1998; Klug et al. 2001; Klug 2002; 

Klug 20(5). Recent stud ies show that gro",th of Microcysfis aeruginosa ([mai et al. 1999) 

and Anabaena circinalis (Sun et al. 2(05) can be inhibited by iron deficiency caused by iron 

complexation with fulvic acid. In contrast, hurnic substances (HS) can stimulate biomass 

production in cultures of Microcyslis aeruginosa, depending on their source and properties 
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(Kosakowska et al. 2(07). Clear differences in sensitivity to humic substances bet\vcen 

groups and species have been found. Direct effects on growth of algae by humic substances 

can be achieved with a lcsscr quantit)' of organic matter than has been proposed for antialgal 

vegetalleachates (rice, barley) (Steinberg et al. 200G: Karasyova et al. 20(7). 

1.3. Barley extract and phytoillankton growth inhibition 

Cyanobacterial blooms have become of global concern and have both economical and 

ecological implications. Currentl~;, effort is directed to understanding the environmental 

dynamic that is involved in their development. in order to identify the key factors that may 

aLlow the natural restoration of damaged ecosystems. Solutions, however, are not 

immediately available and it will take time to achieve the implcmentation of cnvironmental 

measures to attenuate eutrophication processes and try to recover healthy ecosystems. 

Meanwhile, principally for economical reasons, there is a major effort in the search for quick, 

environmentally-friendly solutions for achieving control of cyanobacterial blooms. 

There has been an important research effort directed toward naturaJ compounds, isolated 

from a wide range of terres trial and aquatic plants, that are reported to have inhibitory effects 

on grovvth of phytop1ankion species (Pillinger et al. 1995: Barret et al. 1999: Park et al. 

200G). The objective was to und substances that constitute a selective (Barret et al. 1996), 

cheap, fast-acting, long-lasting 'slow release' (Barret et al. (999) and low ecological impact 

solution for the growth and proliferation of cyanobacterial species responsible for blooms. 

Since 1980, ,,·hen accidentai addition of rotting ha)' to a lakc appeared to reduce growth of 

algae, there has been a gro\ving interest in the alellopathic propertics of compounds derived 

from barley straw and their effects. ln 1990 Welch provided the fifSt report of the use of 

barley straw in reservoirs (Welch 1990). From the addition of the straw Welch achieved long 

term effect on the filamentous alga Cladophora. 

Since his stl.ldy inhibition of growth of selected algai species by barley straw application has 

been sho\v in field trials (Gibson et al. 1990: Welch et al. 1990: Pillinger et al. 1992: Pi Ilinger 

et al. 1994: Barret! et al. 1996; Caffrey et al 1999; Ridge et al. 1999: Bali et al. 2001), in 
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reservoirs (Barrett et al. 1996: Everall et al. 1996: Everall et al. 1997: Barrett et al. 1999), in 

marine water against specific dinoflagellate species (Terlizzi et al. 2002; Grover et al. 20(7), 

and in brackish systems (Brownlee et al. 2(03). The results showed reductions in algal 

abundance and cyanobacterial bloorns or dominance. AlI experimcnts converge to 

demonstTate that the effcct is algistatic rather than algicidal. In sorne cases applicalion of 

barley straw had no effect on algal gro",th in experimental ponds (Kelly et al. 1996: Ferrier et 

al. 2005; Grover et al. 2007). 

Laboratory assays have provided eontradictory resulls. Negative effects of barlcy stra\v in the 

growth of algal speeies (incillding green algae, dialoms. dinollagellates and ehrysophytes) 

(Ridge el al. 1996: Martin el al. 1999; Terlizzi cl al. 2002: Brownlee ct al. 2003: Ferricr cl al. 

2005), and fungal speeics (Cooper el al. 1997) havc bccn rcporled. On the other hand. barley 

slra\v can produced a stimulation in growth (Larson 1971L Martin ct al. 1999: Terliu.i ct al. 

2002; Brownlee et al. 2003; Ferrier et al. 2005; Bird ct al. 2007) ln some cases, the use of 

com merci al barley slTaw cxlract has been reporled 10 have no effecl against Ihe growth of 

Anabaena (Bird el al. 20(7) and frymnesium (Grovcr et al. 2007) 

It has been proposed thal different sensitivity of algal species to barley straw inhibitors eould 

certainl)' inlluence their relative abundance (Ridge el al. 1999: Bro\vnlee et al. 2003). 

Although taxonomic differences may aceollnt for resulls in the action of barley stravv, other 

factors and unique condilions from eaeh experiment arc also important ineillding the age and 

condition under whieh rotlcd stra'..v is prepared, Ihe t}'pe (cultivar) of barlcy used, the 

conditions under whieh the barley was grown and Ihe straw dosage (Gibson el al. 1990; 

Brownlee et al. 2003: Ferrier et al. 2(05). 

The concentrations of barley slraw reqllired for algal inhibition in laboratory studies \Vere 

larger than those which were reported in field experiments, suggesting that organic ehemicals 

would be more toxic under field dynamie conditions (Martin et al. 1999; Jancula et al. 2(07). 

Grovvth conditions can make a difference in the growth response produced from antialgal 

compounds. For example, il has been suggested that unicellular green algae is harder to 
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inhibit than blue-green algae because blue green algae is more vulnerable due to a more rapid 

gro"'th rate and a shorter life span (Choe et al. 20(2). 

There are many theories concerning the mode of action o[ barley straw against algae. Some 

of them suggest barley straw is a substrate for microflora and other organism that eventually 

can retain and immobilise nutrients thus limiting the gro\Vth of algae Studics have shown that 

microbial decomposition of the straw is essential for the inhibition of growth (Gibson et al. 

1990; Garbett 20(5) Sunlight \Vas suggested to be important in the liberation and production 

by decompositiol1 of antialgal compounds from the stT8\V, increasing thc photo-oxidation of 

phenolics, as weil as the formation of phytotoxic hydrogen peroxidc, singlet oxygen, 

superoxide radicals, and/or quinones (Pillinger et al. 1995; Pillingcr ct al. 1996; Schrader et 

al. 1999; Geiger ct al. 2005; Bird ct al. 2007; Drabkova et aL 2007: Drabkova et al. 2007), 

but contradictory results showed that phototransformation (prcsumably photooxidation) of 

straw decomposition products into phytotoxic compounds maybe is not important for 

photoautotrophic species (Meghara,i et al. J992: Martin ct al. 1999). and that peroxide docs 

not necessarily have an antialgal effect at natural levels (Bird ct al. 2007) 

Field experiments demonstrated that when straw is employed for restrictions of algae growth, 

suitable surface properties allow microorganisms and fungi to adhere and decompose the 

straw (Wisniewska et aL 2(03). It appears that the nature (type and quanti!)') of the inhibitory 

substances in decomposing strél\V may vary over the course of the straw' s decom position 

(Ferrier et al. 2005). Microflora per se could metaboJizc compounds responsible for the 

alellopathic activity, 

On the other hand (Pillingcr et al. 1992) demonstrated that the production of algal inhibitors 

by specific fungi cannot explain fully the antialgal effects of rotting barley straw. Other 

hypotheses mention that barley straw can provide a carbon source [or carbon-limited 

microbial growth. With the carbon availability secure, the microbial communit'y production 

soars - the non-cyanobacteria populations - and phosphoms uptake is shunted through the 

non-cyanobacterial microbial loop ecosystem. The presence of decaying barley straw 
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therefore results in phosphoms limitation for algae, nol inhibition by a released chem ical 

compound (Geiger et al. 20(5). 

Many sl11dies have lried to identify the biologically-active chemical (or chemicals) released 

from the deeomposing straw. There are clues that indicate lhat phenolic compounds may be 

implieated in the inhibilory effeets on specifie algal speeies. Parks cl al. (1969) found that a 

range of phenolics from decomposing plant malerial. including gallie aeid, inhibited cullures 

of Lyngbyo and Anoboeno. Pitlinger el al. (1994) implicaled quinones, produced from lhe 

oxidation of phenolic hydroxyl groups and lannins. prineipally From the lignin portion of the 

plant material. that is in high proportion in barley (Pil1inger et al. 1995: Stewart et al. 1995). 

Under the right conditions of increased aeralion, these quinones were 10 limes more loxic 

lowards Microcystis and rh/orel/o than \Vere phenolie acids. Ferrulates (lhe major 1ov,,' 

moleclIlar weighl phenolic compound in barley) havc also been demonstrated 10 have 

important antialgal properties, enhanced by lighL when applied to ponds to control exccss 

gTowth (Schrader el al. 1999). For Microcyslis and .)'cenedesmus. ester compounds \Vere 

found 10 be antialgal chemicals, white a phenol compound was idenlified as a subagenl (Choc 

el al. 20(2). Protein synthesis associaled wilh photosynlhcsis. cell metabolism. and 

membrane funclion in cyanobacleria are major largels of tannin eompounds (Zhao et al. 

1998). 

Lignin seems to be the potential source of anti-algal prccursory oxidised phellolics, its 

potential action is nol restricted to barley straw, and il can be the most promising source of 

antialgal inhibition by the synergislic action of one or more compounds From ils 

deeomposition (Everall et al. 1997). Other materials have also been found to be anti-algal 

ineluding brown-rotted wood, some leaf litters. in partieular oak leaves (Q1Ierc1Is robl/r) 

(Pillinger et al. 1995; Ridge et al. 1996: Ridge el al. 1999), mllgwort, riee slTaw (speeial1y 

salicylie aeid (Park et al. 2(06» and chl}'santhemum (Choe et al. 2(02), and members [rom 

lhe family Papaveraceae (Jancula et al. 200]) 

This study invesligaled ho\\' an increase of organle matter and the addition of barley extrael 

ean influence the aquatic environment by ehanging phytoplanklon populations, and 
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specifically whether there is an inhibition of cyanobacterial species, that allO\vs the use of 

allochthonous organic matter against blooms. Concentration of allochthonous organic matter 

from Pike River (that goes directly to Champlain Lake and reflect nahlral input of organic 

matter from watershed), and commercial barley e:xtract were used to achieve the efreet 

against Cyanobacteria. A factorial experiment to asses the errect of dissolved organic matter 

and barley extract modulated by environmcntal factors (Iight level, nutrient slalus) \vas 

designed. 

1.4. Research problem 

Algal blooms are a considerable tlueat to the quality of surface waters, Iimiting their use for 

drinking water, recreation or fishing, and afecting ecosyslems. Missisquoi Bay of Lake 

Champlain, situated across the US-Canada border in the province of Quebec, has developed 

in the last decade massive cyanobacterial blooms. Dissolved organic matter (DOM) may 

affect phytoplankton growth, especially cyanobactcrial bloom forming species. Faclors as 

source of DOM and light regime may be important in modulating this effect. This study tried 

to determine the influence of dissolved organic maller (DOM) on the cyanobacterial bloom, 

assessing effecl of DOM source, Iight regime and nutrient status on the dynamic of 

ph~toplank10n. 

1.5.Working Hypothesis 

Considering the growmg evidence of effect of dissolved orgal1lC matter (DOM) on 

phytoplankton, 1hypothesize that DOM will control cyanobacterial bloom species growth in 

Lake Champlain. To assess the hypothesis, different kinds of DOM \Vere tested as conlTolling 

factors for the growth of cyanobacterial bloom fonning species. The experimental design 

evaluated the eITect of Iight intensity and nutrient status, known to modulate the interaction 

between DOM and phytoplankton. 



CHAPTER II: METHODOLOGY 

2.1. Site description 

Lake Champlain is situated along theUS-Canada border, bet"veen Vennont and the 

Adirondack Mountains of New York, and covers an area of 700 square kilometers with 

13,250 square kilometers drainage basin. The field study was conducted in the Missisquoi 

Bay near the tOWI1 of Philipsburg, in the province of Quebec. 

2.2. Generallimnological characterizatioo 

We followed limnological variables at two stations in Missisquoi Bay of lake Champlain, at 

weekly or biweekly intervals, between May and November in 2006 and 2007. The first 

station, called "littora!", was located near the Philipsburg dock (average depth 2 m) (Figure 

1). The other one, caUed "pelagic" (4 m average depth) \Vas located approximately 2 km from 

the shore in the open water of the lake. 

Figure 1. Placement of sampling stations in Missisquoi Bay, Lake Champlain. The littoral 

site was located within the protection of the Philipsburg quay. 
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Water physical and chemical parameters, such as depth, temperature, conductivity, pH, and 

dissolved oxygen were determined in situ near the lake surface with a Thermo 3 star meter 

for pH and an YSI 600 XLM Multi-parameter watcr quality monitor for the other parameters. 

Integrated water samples were collected in a Van Dom sampler from surface unti) the photic 

zone Iimit determined from Secchi disk depth. Samples for chlorophyll a and nutrients (N03, 

TN, TDN, NH4, TP, TOP, DOC) were taken from the depth integrated samplc. Ali samples 

were taken in duplicate; samples for ammonium analysis were taken in tTiplicate. Ammonium 

(NH4-N) was determined colorimetrically (APHA et al. 1998). Concentrations of total 

phosphorus (TP) and total dissolved phosphorus (TOP, Whatman GFIF filtered water) were 

measured by the molybdenum blue method after persulfate digestion. Ali colorimetric and 

absorbance measures were taken using an Ultrospec 2100 Pro spectrophotometer. 

Concentrations of total nitrogen (TN) and total dissolved nitrogen and nitrate (TON - N03, 

Whatman GFIF filtered water) were measured as nitrates aner alkaline persulfate digestion 

using an A1pkem Flow Solution IV autoanalyzer. Concentrations oC DOC (Whatman GF/F 

filtered sample water) were measured by high temperature oxidation on ail Analytical 1010 

Total Organic Carbon Analyzer after acidification. Samples for chlorophyll a were filtered 

(Whatman GF/F) and analysis was made by hot ethanol extraction, followed by 

spectophotometric determination of the extracts absorption (Lorenzen 1967). 

Photosynthetically available radiation (PAR) was measured in ~ol m-2 ç! using a Li-Cor 

light meter 11-250. A second sensor served as a reference, measuring PAR simultaneously 

above the water surface. 

2.3. Phenolic compounds determination 

Lake water filtered with Whatman GFIF was ana1yzed for total phenolic compounds using 

the Folin-Ciocalteau colorimetric assay with tannic acid (Sigma) as standard (Box 1983). 

Total phenolics are given as tannic acid equivaJents. Phenolic acids were measured in the 

context of the experiments. 
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2.4. Preparation of XAD 8 resin and concentration of organic matter 

The use of the non-ionic macroporous XAD 8 resin allowed the isolation of the fraction of 

the hydrophobic DOM (Thurman et al. 1981), consisting principa!ly of macromolecular 

humic substances. 

2.4.1. Resin preparation 

Supelite™ XAD-8 resin (Supelco) was extracted in a beaker with 0.1 N NaOH. Fines were 

decanted off after each daily rinsing of NaOH for 5 successive days. Next, the resin was 

soxl1let-extracted sequentially for 24 h with methanol, diethyl ether, acetonitrile, and 

methanol and stored in methanol until used. Before column packing, methanol was rinsed 

from the resin with distilled water until free of methanol, using approximately 50 bed 

volumes , the packed column was rinsed three times with three pore volumes alternating of 

o 1 N NaOH and 0.1 N HCL This cleaning sequence was repeated three times (Thurman et al. 

1981). 

2.4.2. Preparation ofwater samples and resin extraction 

Because Pike River is a natural affluent to Lake Champlain we decided to use Pike River 

water to make the concentration of natural incoming DOM to the lake. Between 17 and 20 

July 2007, for experiment 2 made in July, and between 20 and 23 August, for experiment 3 

made in September, approximately 30 Lof Pike River filtered water were acidified to pH 2.0 

with concentrated HCI. The water samples were then pumped with a Cole-Palmer Masterflex 

pump at a rate of 15 bed volumes per hour. The hydrophobic acids adsorbed were eluted from 

the resin in reverse direction with 0.1 N NaOH at a flow rate of 5 bed volumes per hour, 

eluates derived from the procedure were desalted primarily to removc sodium and chloride 

ions that were added during pH adjustments, reapplied onto the respective columns at about 

four pore volumes per h (approximately one-fourth the flow rate used during the initial 

isolation step) The columns were then flushed with Milli-Q water to remove chloride ions, 

until the electrical conductivity of the co/umn effluent was <750 mS/cm. Retained organics 

were re-eluted using 0.1 N NaOH. Sodium was removed from the (chloride-free) eluates by 

passage through a co/umn containing hydrogen-saturated cation exchange resin (AG-MP 50, 

Biorad) 
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Approximately 70 ml ,vere obtained from the concentration process in each case, different 

tests were conducted (spectophotometry concentration and DOC) to fmd the correct amount 

of extract necessary to increase DOM in the experiments (between 2 and 5 ml). Concentrate 

was stored at 4°C until utilization (Thunnan et al. 1981; Moran et al. 1994; Quanrud et al. 

2003). 

2.5. Experimental setu 1) for in-situ iDeu bations 

Three experiments \Vere nlll in summer 2007 to investigate the effects of the addition of 

DOM on phytoplankton communities. First experiment was conducted bet\veen June 11 and 

15, second experiment bet\Veen July 23 and 27 and a final experiment bet\veen September 17 

and 21. Three structures \Vere placed at Missisquoi Bay of lake Champlain, at different 

depths cOlTesponding to different Iight levels calculated by PAR Iight attenuation coefficient 

(Figure 2), corresponding to full sun light level (at the surface), half sun light (at 0.8 Hl from 

surface), and quarter of sun light (at 1.6 m from surface). Each light level contained closed 

600 ml plastic containers with half content of whole lake water and other half \Vith filtered 

lake water (to decrease the effect of grazing). 

Figure 2. Experimental setup for incubations 

Full sun light 
r 1 

Y2 sun ljght (0.8 m)--1 
1 

Y4 sun light (1.6 m) 

For each different condition of exposure to light, three different treatments were considered: 

control (without any addition), plus barley dose (commercially recommended barley extract 

(Microbe lift CBSE) dose 15.67 IlIIL for eradication of Cyanobacteria in lakes), and plus 
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concentrated organic matter from XAD-8 resin extraction. Each treatrnent was carried with a 

nutrient surplus replicate (using BG II medium, (Rippka et al. 1979)) with sodium nitrate for 

cxperiments one and two and ammonium chloride for experiment three, to avoid nitrate 

photochemistry (Zepp et al. 1987). Ali the treatrnents were conducted in duplicate. General 

limnological characterization of the lake at the site of the incubations was made on day one 

and day four of each experiment. On day four, samples for Chlorophyll a, nutrients (N03, 

TN, TON, NH4, TP, TOP, and DOC), total phenolic compounds, color from filtered water, 

and organic matter were taken from the bottles and were analyzed as described before. 

Samples for taxonomical characteri7.ation were taken in triplicate from each bottle on day 

four and were preserved in Lugol's solution. 

2.6. Characterization of dissolved organic matter 

Absorbance at 440 nm (color) of filtered water was measured as index to assess the 

concentration of humic substances in natural waters (Cuthbert et al. 1992). Measures of 

absorbance of filtered water at 254 and 272 nm in experiment 3 (September 2007) were 

included to achieve a better characterization of characteristics of DOM, due the strong 

capacity of humic and fui vic acids to absorb the UV part (200-365 mn) of the light spectrum. 

Absorbance at 254 nm is considered a good proxy for aromatic content in dissolved organic 

carbon, and absorbance at 272 usually reflects the proportion of humic substances in DOM 

(De Haan 1992). 

2.7. Taxonomical characterization and carbon biomass determination 

Phytoplankton samples for enumeration were examined from day 4 of each incubation 

experiment. One replicate was examined for each one of the treatrnents from the incubations 

on day 4 (Experiment 1 - 16 samples, Experiment 2 - 21 samples), for experiment 3 t\vo 

replicates were examined (Replicate 1 - 21 samples, Replicate 2 - 18 samples). Ali the 

phytoplankton were identified and counted at species level. Counts were done under an 

inverted microscope by Utennbh1 's method (Lund et al. 1958), cell size was detennined by 
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the measurement of Iinear dimensions of a number of cells under high magnification using an 

ocular micrometer fitted into one eyepiece. Algal biovolume was calculated from single cells 

(Hillcbrand ct al. 1999; Sun et al. 2003) and converted to carbon biomass (Verity el al. 1992; 

Menden-Deuer et al. 2000). 

2.S. Statistical methods 

Correlation analyses were carried out to deterrnine the relations between the different 

variables studied. The effects of treatments in incubations experiments were analyzed with a 

full factorial ANOVA (p. 0.05 level of significance). Ali statistical analyses were performed 

using the JMP 7.0 statistical software (SAS Institute). Canonical correspondence analyses 

"vere run with Canoco for Windows 4.5 and visualized by ordination diagrams in Canodraw 

4 for windows (Biometris-Netherlands). 



CHAPTER III: RESULTS 

3.l.Missisquoi Bay - Lake Champlain 2006 and 2007. -. 

Table 1. Mean, range and variability of nutrient parameters at the two sampling stations of 
Missisquoi Bay, Lake Champlain, in 2006 and.2007 (There was a tendency for mean and 

maximum values to be lower in 2007) 

TN ml!/L TDN ml!/L NOj molL NH4 ml!:lL TP m~IL TDPmwL 
Max. 2.0157 1.855 1.6819 O. j 935 0.1975 0.0821 

Min. 0.2973 0 0.0128 0.0252 0.0208 0.0\32 

2006 Mean 0.9943 0.6908 03911 0.0735 0.0857 0.0313 

St. Dev. 0.3751 03873 0.4030 0.0352 0.0385 0.0148 

N. 54 54 54 56 54 53 

Max. 1.0939 25309 07894 0.1289 0.1875 0.0444 

Min. 0.4423 0.2806 0 0.0122 0.0257 0.0121 
2007 Mean 0.7104 0.6201 o 1613 0.0480 0.0691 0.0248 

St. Dev. 0.2363 0.5479 0.2122 0.0316 0.0350 0.0080 

N. 30 30 30 40 30 30 

Figure 3. Phosphorus and chlorophyll a concentration for Missisquoi bay - Lake Chanlplain 
in 2006 and 2007 
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Regarding the dynamics of phytoplankton, a cyanobacterial bloom dominated by the genus 

Microcystis was observed from the middle of July until the middle of September in 2006. The 

only clear relation observed between physicochemical and biological parameter (Table 1) 

was a significant and strong positive correlation between chlorophyll a concentration and 

total phosphorus concentration (R2 = 0.45 - 0.60, F Prob. < 0.0001) for different stations 

(Figure J), and a positive correlation between chlorophyll a and organic matter in 2007 ( R2 

0.7 - 0.75; Prob > F <0001). 

3.2. Natural dissolved organic matter experimental extraction and addition 

Treatments based on the addition of DOM supplement from XAD 8 resin extraction resulted 

in a 3-fold increase in natural dissolved organic carbon, and 3 to 6 fold increases in total 

phenolic compounds (Figure 4) compared with lake values at the time of the experiments. 

Concentrations of total phenolic compounds in the lake when the experiments were done 

(between 0.56 and 1.53 mg/L) were near that reported in the Iiteralure for other lakes in the 

world (belween 0.24 and 0.55 mg/L) (Box 1983; Hilt et al. 2006). 

With the addition of BG II medium (Rippka et al. 1979) between 2 and 3-fold increase in 

total nitrogen and total phosphorus concentration was obtained (Figure 5). Treatment with the 

addition of organic matter did not cause a significant increase in the amount of nutrients. As 

supplement of nitrogen we used different sources: in experiment 1 and 2 made in June and 

July nitrate was used, and in experiment three ammonium was added to avoid nitrate 

photochemistry (Zepp et al. 1987). 
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Figure 4. Increases in dissolved organic carbon and total p!lenolic compounds measured al time zero for treahnents in the experiruents 
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3.3. Incubation experiment results 

Table 2. Correlations between variables for ail the incubation experiments (monitoring data 
not included) 

Variable by Variable Correlation Number SignifProb 
of 

samples 
NOx (mg/L) Chia (~gll) 0.46 134 <.0001 
PT (mglL) ChIa <l1g/l) 0.46 134 <.0001 
PTD (mg/L) NOx (mglL) 0.47 136 <.0001 
PT (mglL) NOx (mglL) 0.51 137 <.0001 
TDN(mglL) Chia (llg/I) 0.54 130 <.0001 
PTD (mglL) TDN (mg/L) 0.58 132 <.0001 
TN (mg/L) Chia (~g/I) 0.62 134 <.0001 
PT (mglL) TDN (mg/L) 0.68 133 <.0001 
PT (mglL) TN(mglL) 0.77 137 <.0001 
NOx (mg/L) TN(mglL) 0.86 137 <.0001 
NOx (mg/L) TDN (mg/L) 0.90 134 <.0001 
DOC (mg/L) Total Phenolic Compounds 0.93 95 <.0001 

r~/Ll- Tannic Acid Units 
TDN(mglL) TN(mglL) 0.94 133 <.0001 
Absorbance 272 11111 Total Phenolic Compounds 0.95 50 <.0001 

r~l- Tannic Acid Units 
Absorbance 440 I1In Total Phenolic Compounds 0.95 92 <.0001 

Ir~/Ll - Tannic Acid Units 
Absorbance 254 nm Total Phenolic Compounds 0.96 50 <.0001 

Ir~Ll- Tannic Acid Units 
Absorbance 440 nm DOC (mglL) 0.98 92 <.0001 
Absorbance 440 mn Absorbance 272 nm 0.98 52 <.0001 
Absorbance 272 mn DOC (mglL) 0.99 50 <.0001 
Absorbance 254 I1In DOC (mglL) 0.99 50 <.0001 
Absorbance 272 I1In Absorbance 254 nm 0.99 52 <.0001 
Absorbance 440 I11n Absorbance 254 nm 0.99 52 <.0001 

Ali correlations were positive for the parameters included for the incubations experiments. 

There were strong positive correlations between chlorophyll a and nutrients, between 

different nutrients and ben,veen absorbance at different wavelengths, DOC and total phenolic 

compounds (Table 2). 

Samples for absorbance at 254 and 272 11111 were only for experiment 3 - September 2007 

and samples for absorbance at 440 nm were only for experiments 2 - July 2007 and 

experiment 3 - September 2007. 
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Table 3. ANOY A probabilities for algal growth rate in incubation experiments 

EXllcriments with barley and organic 

matter extract addition (July, September) 

Growtb 
Rate 

R SQuared 0.976 
R SQuared Adj 0.952 
Root Mean Square Error 0.048 
Mean of Response 0.334 
Observations 72 

F Ratio 41.836 
Prob> F <.0001 

Et'feet Tests Prob > F 
Barley 0.266 
Light Level 0.114 
Light Level*Barlev 0.995 
Light Level*Nutrients 0.221 
Light 0.518 
Level*Nutrients* Barley 
Light Level*Nutrients*OM 0.314 
Light Level*OM 0.558 
Month <.0001 
Month*Barley 0.111 
Month*Light Level 0.057 
Month*Light Level*Bariev 0.801 
Month*Light 0.101 
Level*Nutrients 
Month*Light 0.110 
Level*Nutrients* Barlev 
Month*Light 0.860 
Lcvel*Nutrients*OM 
Month*Light Level*OM 0.365 
Month *Nu trients (l.02l 
Month *Nutriellts*Bariey 0.000 
Month*Nutrients*OM 0.020 
Month*OM 0.023 
Nutrients <.0001 
Nutrients* Barlev 0.211 
Nutrients*OM O.DOO 
OM 0.01 Cl 

Experiments with barley addition 

(June, July, September) 

Growtb Rate 
R Squared 0.967 
R Squared Adj 0.932 
Root Mean Square 0.060 
Error 
Mean of Response 0.265 
Observations 68 

F Ratio 27.333 
Prob> F <.0001 

Et'feet Tests Prob > F 
Barley 0.497 
Light Level 0.029 
Light Lcvel*Barley 0.799 
Light Lcvel*Nutrients 0.080 
Light 0.372 
Level*Nutrients*Bariey 
Month <(l00 1 
Month*Barlev 0.378 
Month*Light Leve! 0.0014 
Month*Light 0.884 
Level*Bariev 
Month*Light 0.207 
Level*Nu trients 
Month*Light 0.226 
Levcl*Nutrients* Bariev 
Month*Nulrients <000\ 
Mon th *N utrien ts *Barlev 0.001 
Nutrients <.0001 
Nutrients*Barley 0.005 
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To evaluate whether the different treahnents used at different Iight levels had an effect in the 

ln chiafinal -ln chiail/ il
growth of phytoplankion we calculated the growth rate as J.1=-------'-----­

incubation lime 

Analyses of variance were conducted for growth rate values from the experiments with barley 

addition and for the experiments with barley and organic matter extract addition (Table 3). 

Time of ex periment (indicate as month) had a significant errect on the growth rate of 

phytoplank10n for different light and nutrient levels. The response for the addition of 

nutrients and different light level was as expected, increase in phytoplankton growth for ail 

the treatments. The effect was strongest considcring only cxpcrimcnts with barley addition. 

There was a significant response for the addition or barley and organic matter only in the 

presence of nutrient supplement. The response was significantly different for experiments in 

distinct months. Effect of the addition of organic matter was stronger than the effect of 

barley. Conceming the scaled estimates (ail factors -light, nutrients, DOM and barley 

addition- at ail levels) there was a significant interaction between nutrients and the strongest 

Iight intensity; between nutrients, barley addition and the intermediate Iight intensity and 

between the lowest light intensity and barley addition. 

Table 4. ANOYA probabilities for growth rate in incubation experiments by month (in red 

significant differences, in green values near to be significant) 

Growth Rate Prob > F 
EXI>. 1 (Junc) Exp. 2 (July) Exp. 3 (Scl>tcmbcr) 

Light Level 0.038 0.766 0.008 
Nutrients 0.154 <.0001 <.0001 
Ligbt Level*Nutrieots 0.569 0.OG1 0.868 
Barley 0.984 0.091 0.695 
Ligbt Level*Barley 0.801 0.912 0.865 
Nutrieots *Barley 0.061 0.090 0.000 
Light 0.528 0.144 0.598 
Level*Nutrieots*Barlev 
OM 0.923 0.001 
Light Level*OM 0.760 0.227 
Nutrients*OM 0.335 <.0001 
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Considering each experiment there was a strong effect of light on growt:h rate in June. 

Nutrient addition had the strongest effect in July and September experiments. 111 September 

there ,vas a significant effect of DOM addition and From the interaction between nutrient and 

DOM or barley addition (Table 4). 

Figure 6. Chlorophyll a concentration for different treatments in experiment 1 - June 2007 
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Phytoplankton in the firs! experiment \Vas strongly light Iimited; grO\vth was significantly 

higher for the highest light exposure (Figure 6). There was high variability between replicate 

values in this experiment making it difficult to evaluate the effect From the treatments, 

especially for the experiment with the lowest Iight intensity The addition of nutriellts 

illcreased growth of phytoplankton especially for the highest and the intennediate light levels. 

For the intermediate light level there was a significant decrease in the growth of 

phytoplankton in the treatment with barley and nu trient addition. 



--

23 

Figure 7. Chlorophyll a concentration for different treatlllents in experilllent 2 - July 2007 
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Phytoplankton growth in the second experiment was strongly nutrient lilllited (Figure 7). 

Growth of phytoplankton \vas signiGcantly lower with the addition of organic matter and 

nutrients for the highest and the lowest light lcvels. For the intermediate Iight level there was 

a decrease in the growth of phytoplankton \vith the addition of barley and nutrients. 

Figure 8. Chlorophyll a concentration for different treatments in experiruent 3 - September 
2007 
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The experiment conducted in September showed that the phytoplankton community was still 

strongly nutrient Iimited (Figure 8). Growth of phytoplankton was significantly decreased 

with the addition of barley and nutrients for alliight levels, especially for the highest one. For 

the intennediate Iight level there was an important increase in the growth of phytoplankton 

wi th the addition of organic matter and nutrients. 

3.4. Respooses at taxonomie leveJ 

Because of the absence of significant levels of cyanobacteria in the first two experiments, less 

emphasis was placed on the taxonomical characterization of experimental results. Only one 

replicate per treatrnent was counted in experiments 1 and 2. For experiment 3 we used 

observations from one replicate from each incubation bottle, which meant two true replicates 

per treatment. 

Cryptophyceae was dominant in the lake at the beginning of the experiment in June 2007 

(Figure 9). In the incubations the biggest proportion of biomass was [rom green algae 

(Chlorophyceae) followed by Chrysophyceae and Bacillariophyceae In general there was an 

increase in Chlorophyceae with the addition of nutrients, an increase in the proportion of 

Chrysophyceae at highest light intensity with the addition of barley and an increase in the 

proportion of Cyanophyceae with the addition of nutrients and barley at the same high light 

level. Bacillariophyceae was the most important group for the control samples in the 

intem1ediate and lowest light intensity. The addition of barley at the highest light intensity 

increased the proportion of Dinophyceae. For Cyanophyceae the lowest proportions were at 

low and intermediate light intensities with barley addition (Figure 9, Figure 10, Figure II). 
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Figure 9. Distribution ofmajor algal classes at different light levels for incubation experiment 1 - June 2007 
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Figure 10. Distribution ofmajor algal classes at different light levels for incubation experinlent 2 - July 2007 
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Cryptophyceae, Dinophyceae and Chlorophyceae were predominant for the lake at the 

beginning of the experiment in July 2007. In the incubations Chlorophyceae, 

Bacillariophyceae and Dinophyceae increased their proportions at the expense of nutrients. 

There was an important increase in the proportion of Dinophyceae with the addition of 

organic matter especial1y for the lowest and highest light intensities. There was a small 

increase in the proportion of Cyanophyceae at the intermediate light level for the control and 

\Vith the addition of nutrients except for the samples with nutrients and barley (Figure 10). 

Table 5. Percentage of taxonomical group composition for ail the treatments in experiment 3. 

For each light level values in red represent highest proportions and values in green represent 

lowest proportions 

% Cyanophyceae Cryptophyceae Bacillariophyceae Dinophyceae Chlorophyceae Chrysophyceae 

Lake DO 0.044 0.023 2.300 97.25 0.296 0.078 

LakeD4 0.001 0.043 5.241 94.33 0.381 0.000 

- 0.201 0.002 17.28 82.36 0.080 0.068 
N 1.203 0.041 G5.34 31.92 1.423 0.063 

High 
B 0.046 0.003 5.857 94.00 O.OSO 0.034 

light 
NB 0.281 0.065 47.70 51.52 0.359 0.063

level 
MO 0.143 0.005 10.51 88.53 0.481 0.320 
MON 0.097 0.031 34.06 64.96 0.810 0.024 

- 1.054 0.015 20.92 75.76 1.721 0.519 
N 0.694 0.049 9712 0.588 \.501 0.044 

Intenned. 
B 0.057 0.002 6.505 93.2] 0.153 0.062

light 
NB 0.475 0.049 73.41 24.65 1.305 0.102

level 
MO 0.139 0.005 24.83 74.86 0.025 0.130 
MON 0.125 0.029 73.43 24.72 1.655 lU130 

- 0.622 0.004 27.32 71.72 0.101 0.220 
N 2.034 O.on] 59.60 36.73 1.600 0.021 

Low 
B 0.680 0.009 20.08 n.90 0.229 0.089

light 
NB 1.268 0.022 51.74 46.08 0.858 0.025

level 
MO 0.121 0.006 24.69 74.57 0.384 0.221 
MON 0.088 0.005 17.73 81.93 0.211 0.022 
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Figu re 11. Distribution of major algal classes at different light le\'els for incubation experiment 3 - September 2007 
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Dinophyceae, Bacil1ariophyceae, Cryptophyceae and Cyanophyceae were dominant in the 

lake at the beginning of the experiment in September 2007 (Figure Il). There was increased 

proportion of Bacillariophyceae with nutrient addition particularly for the intermediate light 

intensity, Dinophyceae proportion increased with barley addition especially for the high and 

intermediate light levels (Figure Il) 

It is importanl to note that there was a change in proportion belween Baci!lariophyceae and 

Dinophyceae when nutrients and barley were added. The proportions of the taxonomical 

groups were similar with organic matter and barley addition. When nutrients were added with 

barley or organic matter, proportions of Bacillariophyceae and Dinophyceae were similar for 

the highest and the lowest light intensities, for the intermediate Iight intensity proportions 

\Vere highest for Bacillariophyceae as in the samples with nutrients (Table 5). 

The proportion of Cyanophyceae increased with the addition of nutrients, especially at 

intennediate light leveL There was a decrease in the proportion of Cyanophyceae with the 

addition of barley, organic malter, and organic matter and nutrients, particularly for the 

highest and lowest light intensities. 
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3.4. J. Analysis of variance 

Table 6. Significant probability values for ANOVA in incubation experiments for ail 
months 

Growth rate- Growth Rate Growth Rate- Final biomass - July 
Taxonomical - Barley Barley addition and September 2007 

Group addition (Lo!!) (Log) 
R SQuared 0.369 0.378 0.049 0.040 
R SQuared Adi 0.118 0.068 0.026 0.017 
Root Mean Square Error 0.542 0.560 4.33E-05 5.09E-05 
Mean of Response 0.075 0.070 -0.000 -0.000 
Observations 1134 756 1469 1452 

F Ratio 1.47 1.220 2.127 1.721 
Prob> F <.0001 0.031 0.000 0.005 

Effect Tests Prob > F 
Experiment 0.008 
Experiment*B*Light Level 0.045 
Experiment*Group <.0001 
Experiment*N 0.000 0.002 
Group <.0001 
Light Level 0.001 
N 0000 
N*Light Level 0.025 
Species <.0001 

There was a significant effect of the treatments on the growth rate at species and group levels. 

Time of experiment (indicated as month) and the interaction with the taxonomical group had 

a significant effect on the growlh rale of phytoplankton (Table 6, Table 9). Considering only 

experiments with barley addition, there was an effect of nutrient addition, the interaction 

between nutrients and the month of the experiment, and the month of the experiments, 

nu trient and barley addition. Taking into account only cxpcrimcnts with barley and organic 

matter addition (July and September 2007), there was a significant effect in final biomass of 

phytoplankton at different light levels and for the interaction between nutrient addition, 

month and light levels (particularly for July at highest lighllevels). At the species level there 

was a significant difference in the growth rate for Aphanocapsa, Aphanolhece, Cyclolella, 

Siephanodiscus, Cryplomonas. Rhodomonas, Kalablepharis, Carleria and Chlamydomonas. 
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Table 7. Significant probability values for ANOVA regarding Cyanobacteria in incubation 

experiments for ail months 

Growth rate ­
Cyan obacteria 

Biomass -
Cyanobacteria Barley 

addition (Log) 

Biomass - Microcystis 
July and September 

2007 
RSauare 0.532 0.249 0.670 
RSquare Ad.i 0.297 0.124 0.359 
Root Mean Square Error 0.479 0.124 1.94E-05 
Mean of Res\Jonse 0.091 0.552 2.04E-05 
Observations 213 247 36 

F Ratio 2.263 2.002 2.156 
Prob> F <.0001 0.0015 0.057 

Effect Tests Prob > F 
B 0.008 
N 0.000 
N*B*Light Level 0.053 
Species <.0001 
Experiment 0.000 
Experiment*N 0.036 

There was a significantly higher growth rate at species level for Cyanobacteria in the 

incubation experiments, particularly for Aphanocapsa and Aphanolhece. ln the experiments 2 

and 3 (June and July 2007) there was a positive effect on the final biomass of Cyanobacterial 

species for different months and nutrient addition treatments, principally for the highest and 

intermediates Iight levels in June, and in general for the highest Iight level and the interaction 

with nutrient addition. At the species level there was an effect on the final biomass of 

Microcyslis in the experiments with barley and organic matter addition (July and September 

2007), in particular with the addition of nutrients (positi ve effect) and barley extract (negative 

effect) (Table 7, Table 9). 

Considering only final biomass of Microcystis after the incubation experiments (Figure 12) 

there was a significant effect of barley addition and the interaction between barley, light level 

and nutrients. With the addition of nutrients there was an increase in biomass of Microcystis 

particularly for highest light level. With the addition of barley there was a decrease in the 

final biomass of Microcyslis, particularly with nutTient addition. The response for the 

addition of organic matter was similar to the response for barley addition. 
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Figure 12. Interaction profile for final biomass of Micro(vstis (carbon biomass, gIL) ,vith different treatments. Microcystis final 

biomass was higher with the addition of nutrients at high lightlevels and lowest v.·ith the addition of barley (Blue lines indicates 

treatment presence, red line treatment absence). 
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Table 8. ANOYA probability values in experiment 3 - September 2007 

Biomass -
Biomass -

Growth rate Taxonomical Growth rate-
Microcystis

- Experiment group Cyanobacteria 
Experiment 3

3 species Experiment 3 Experiment 3 
(Log)(Log) 

RSquare 0.773 0.628 0.584 0.732 
RSquare Adj 0.548 0.574 0.172 0.464 
Root Mean Square Error 0.267 0.090 3.5IE+08 0.055 
Mean of Response 0.225 -0.468 3.05E+08 0.593 
Observation s 1080 844 216 35 

F Ratio 3.429 11.641 1.418 2.731 
P.·ob> F <.0001 <.0001 0.035 0.0227 

Effect Tests Prob > F 
B 0.004 0.086 
Light Level 0.017 
N 0.001 0.001 
N*Light Leve! 0.008 
B*N*Light Level 0.078 
Species <.0001 <.0001 
B*Species 0.005 

Species*N <.0001 

Species*OM 0.030 

Group <.0001 
Group*N 0.000 

The September experiment had largest proportion of Cyanophyceae in the phytoplankton 

community of ail the experiments. There was an effect at the species level in the growth rate 

for barley and nutrient addition, for different light levels particularly for the highest and the 

intennediate light levels. At the group level there were significant positive effects in the final 

biomass for the interaction between group and nulrienl addition, particularly for 

Chlorophyceae at intermediate light level, and significant negative effects for Cyanophyceae 

with the addition of barley and organic matter at the highest light intensity. In the group of 

Cyanobacteria there was a significant negative effect at the specics lcvel especially for barley 

addition (Table 8, Table 9). 
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Table 9. Direction of significant effect for different parameters in the experiments 

Experiments Experiment 3 Total 
species and EXlleriments phenolic OM-

Parameter groups Cyanophyceae Cyano phyceae Chlorophyceae compounds DOC 
Light Level Negative Negative 
Nutrients Positive 

(Intermediate 
Positive Positive light level) 

Light Positive 
Level*Nutrients Positive (High 

(High Iight Positive (High light 
level) light level) level) 

Barie)' Negative (I-ligh 
Light level) Positive 

Light Positive 
Level*Barley (1-ligh light 

level and high 
nutrients) Negative 

OM Negative (I-ligh 
Iight level) 

Light 
Level*OM 
Nutrients*OM 

Light 
Level*Nutrients 
*OM 

Considering only the final biomass of Microcyslis there was a significant effect with the 

nutrient addition and for the interaction betvveen nutrient, barley and light level. With the 

addition of nutrients there was an increase in Microcystis biomass principally under the 

highest light intensity, with the addition of barley there was a decrease in the final biomass of 

Microcyslis (Figure 13). 
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Figure 13. Interaction profile and biomass plot for MicroGystis in experiment 3 - September 2007 
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3.4.2. DOM and nutrients 

Table 10. ANOYA of parameters re!ated with characteristics and composition of DOM for the incubations. 

Total Phenolic Organic 
Compouods [J.lgIL] matter Absorbance Absorbaoce Absorbaoce 
- Tannic Acid Doits DOC (ml!!L) (ml!!L) 254 nm 272 nm 440nm 

Exp. 2 Exp. 3 Exp. 1 EXP.2 Exp.3 Exp.3 Exp.3 Exp. 3 Exp. 2 Exp. 3 
RSquare 0.971 0.994 0.559 0.998 0.999 0.722 0.996 0.995 0.536 0.999 
RSquare Adj 0.960 0.988 0.075 0.996 0.999 0.461 0.993 0.990 0.235 0.998 
Root Mean Square 207.784 145.859 0.225 0.272 0.110 1.421 0.012 0.062 0.082 0.004 
Error 
Mean of Response 1409.464 1578.455 5.370 8.835 9.726 14.113 0.286 1.428 0.132 0.126 
Observations (or 30 36 22 36 36 36 35 35 29 35 
Sum Wgts) 

Effect Tests Prob > F 
Light Leve! 0.001 <.0001 0.001 0.0001 
Nutrients 0.058 0.002 0.002 <.0001 <.0001 0.000 <.0001 
Light 0.009 0.001 
Level*Nutrients 
Barley 0.909 <.0001 
Light Leve!*Barley 0.936 
OM <.0001 <.0001 <.0001 <.0001 0.000 <.0001 <.0001 <.0001 
Light Level*OM 0.108 <.0001 0.000 0.001 
Nutrients*OM 0.004 0.021 <.0001 <.0001 <.0001 
Light <.0001 
Level*Nutrients*OM 
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Regarding the effect of different treatments in the parameters related with DOM, there was a 

significant negative effect of Iight level and the interaction between barley and Iight level in 

the final amount of total phenolic compounds. The addition of barley had a significant 

positive effect in the final amount of total phenolic compounds, as might be expected The 

addition of organic matter had an effect on almost ail the parameters related. There was an 

important effect of the interaction between DOM and nutrients, for the total DOC 

concentTation in experiment 2 (Table 10). 

We observed an important effect of light for experiment 2 on the concentration of total 

phenolic compounds at the end of the incubations. lncreasing light intensity produced a 

decrease in the concentration of total phenolic compounds when they were abundant (DOM, 

and DOM and nutrient treatments); the effect was minor for the treatment with DOM and 

nutrients (Figure 14, Figure 15). The addition of barley did not contribute significantly to the 

increase of DOC values for the incubation experiments (Figure 15). 

Regarding the effect on nutrients at the end of the incubations, there \-vas a significant effect 

of light level in the final concentration of almost ail the nutrients for experiment 2, despite 

final concentration of total phosphorus. For experiment 3 the effect was significant for total 

nitrogen and phosphorus. For the final concentration of nitTate and ammonium there was a 

significant effect from practically ail the treahnents for experiment 2, the final concentration 

of ammonium was significantly affected for ail the treatments in experiments 2 and 3. 

Organic matter significantly affected the final concentration of a1l the nutrients apart from 

nitrate. There was an important effect of the interaction between OM and light for 

experiment 3, and between DOM and nutrients for experiment 2 (Annex 1). 



37 

Figure 14. Total phenolic compounds concentration for the experiments 
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There was an increase in the concentration of ail nutrients after the addition of dissolved 

organic matter except for nitrate and ammonium. Total nitrogen concentration decreased with 

the increase of light levels in experiments 2. Total dissolved nitrogen concentration decreased 

with the increase of light levels for experiment 1 and 2. The decrease in the concentration of 

this nu trient is significantly higher after the incubations for experiment 3 regardless of the 

level of exposition to light, suggesting greater nutrient limitation in the fall experiment. For 

the treatments where nitrate was added, the final concentration decreased with the increase of 

light levels. Final ammonium concentration decreased with increasing of light \evel for 

experiments 1 and 2, for experiment 3 there was a significant decrease (more than 50%) 

regardless of the level of exposition to light (Annex 3) 

Despite a significant decrease in the amount of total phosphorus after the incubations in 

control for experiment l, there were no significant differences between treahnents or light 

levels in final total phosphorus concentration. Total dissolved phosphorus decreased more 

than 50%, especially in experiments 2 and 3; the nutrient concentration decreased with the 

increase of light levels for experiment 1 (Annex 3). 

Final TDN and ammonium concentrations for the treatrnent with dissolved organic matter 

and nutrient addition showed significant decrease at the highest light intensity There was 

also a significant decrease in the concentration ofboth nutrients with the addition of nutrients 

for the intennediate light level. Otherwise final TDP increased in the highest light intensity, 

and there was a significant increase with the addition of nutrients for the intermediate light 

level (Annex 3). 
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3.5. Correspondence analysis for parameters related with phytoplankton in 

incubation experiments 

Table 11. Summary of correspondellce analysis for parameters related with phytoplankton in 
incubation experiments 

Species SI)ecies-Environment 

Cumulative 
percentage variance 

of species data 

Species­
environ ment 
correlations 

Cumulative 
percentage variance 

of Sl)ecies data 

Cumulative 
percentage variance 

of species­
environment relation 

Axes 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

Taxonomical 
Groups 370 64.5 800 887 0.9 0.9 0.6 0.6 30.2 51.0 55.7 60.2 47.3 79.9 87.2 94.3 

Experiment 
1 Groups 40.6 64.0 80.3 898 0.9 0.9 1.0 0.9 34.3 52.3 67.3 75.2 42.0 64.0 82.3 920 

Experiment 
2 Groups 51.1 733 85.6 926 0.9 0.8 0.9 0.9 43.0 56.2 65.5 71.3 57.5 75.3 87.7 95.5 

Experiment 
3 Groups 41.8 75.8 87.0 969 0.9 1.0 0.9 0.7 352 67.9 763 8\6 42.0 81.1 91.1 97.5 

Ali 
experiments 
Anabaena, 
Microcystis 43.0 64.1 80.5 94.0 09 1.0 08 0.5 36.5 55.2 658 69.l 5\0 771 91.9 96.5 

Experiment 
3 Anabaena, 
Microcystis 43.8 77.8 90.9 100.0 1.0 0.7 09 0.6 38.9 58.7 690 72.9 53.3 80.5 94.6 1000 

Sp. Ali 
EXDeriments 10.1 17.0 23.6 288 \0 \0 0.9 0.9 94 15.6 194 22.2 24.9 4\6 51.6 59.0 

Experiment 
1 SDecies 15.5 28.3 39.8 48.3 1.0 \0 1.0 1.0 148 26.0 36.1 43.9 20.2 35.5 49.3 59.9 

Experiment 
2 SDecies 14.2 25.1 327 397 0.9 1.0 \0 0.9 liA 20.6 26.9 32.2 18.5 33.5 43.7 52.2 

Experiment 
3 sDecies 12.0 219 30.6 381 1.0 \0 \0 \0 117 21.1 296 36.0 154 27.7 39.0 47.5 

Experiment 
3 Cyano 19.3 34.7 47.6 58.2 1.0 0.9 \0 0.9 17.7 28.0 37.3 44.8 25.1 39.7 52.9 63.6 

Cyano Ali 
eXDeriments 15.3 274 37.0 45.9 0.9 0.8 0.8 0.7 11.8 17.6 229 26.8 317 47A 617 72.1 
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The most important taxonomical groups in ail the experiments were Dinophyceae (especially 

at high light intensities), Bacillariophyceae, Cyanophyceae and Chlorophyceae. 

Environmental data (nutrients, DOC, phenolic compounds, absorbance at different 

wavelengths) from incu~ation experiments collected at day 4 explained most of the variation 

in species biomass (g CIL) (Figure 16) especially Anabaena and Microcystis. In ail cases, 

variance explained by the analysis is highest when we consider species and environment 

relation for taxonomical group rather than species biomass data (g CIL) (Table II). 

Regarding the relation between taxonomical groups and the environmental variables there is 

a strong positive relation between Cryptophyceae and Chrysophyceae and high light 

intensities and total dissolved phosphorus concentration. High phosphorus concentration was 

positively related with the presence of Chlorophyceae. High values of absorbance related 

with high contents of organic matter were positively related with the presence of 

Dinophyceae. Low organic matter content was positive1y related to the presence of 

Bacillariophyceae and low concentration of total phenolic compounds and dissolved organic 

matter was positively related to the presence of Cyanophyceae (Figure 16) 

Taxonomical group composition of the sanlples in experiment 1 (Jwle) was more related to 

total dissolved nitrogen and phosphorus concentration and light (Figure 16), Taxonomical 

group composition for experiment 2 (July) was more related to total nitrogen, phosphorus and 

organic matter concentration, particularly samples with barley addition strongly were related 

to high total phosphorus concentration (Figure 16). For the experiment 3 (September), 

taxonomical composition of the samples was strongly related to high values of absorbance 

(related to high dissolved organic carbon content). Taxonomical groups in the samples with 

nutrients, barley and organic matter addition in the highest light level (Experiment 3 ­

September) were related to high concentration of DOC, and, taxonomical group composition 

for samples with nutrient addition at ail light levels and samples with nutrient and barley 

addition in the intennediate light level (Experiment 3 - September) were strongly related to 

high ammonium concentration (Figure 16) Dinophyceae was evidently related to samples 

with barley addition in the highest and intermediate light level for the experiment 3 in 

September (Figure 16), 
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Figure 16. Correspondence analysis for principal taxonomical groups for different ruonths. Betvveen groups c: Cryptophyceae, x: 

Chrysophyceae, d: Bacil1ariophyceae, p: Dinophyceae, v: Chlorophyceae, b: Cyanophyceae. Between saruples first number: 

Experiruent number, N: Nutrient addition, B: Barley addition, MO: Organic matter addition, C: Control, 4-D4: Day 4 of incubation 

experiment, LI: High light level, L2: lntermediate light level, L3: Low light level. 
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Figu re 17. Correspondence analysis for ail the species in different months. Between samples first number: Experiment number, N: 

Nutrient addition, B: Barley addition, MO Organic matter addition, C: Control, 4-04: Day 4 of incubation experiment, Li: High light 

lcvel, L2: Intenuediate light level, L3: Law light level. 
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Regarding species composition of the samples there was a big variability that couldn't be 

explained by the correspondence analysis (Table Il). The composition of the samples 

relating to species was more similar between samples in cxperiment 3 (September) (Figure 

17). Presence of species in experiment 1 was more related to the concentration of nutrients as 

nitrogen and phosphorus and Iight (Figure 17) Presence of species in experiment 2 was more 

related to the concentration of organic matter. Presence of species in experiment 3 was more 

related to absorbance at different wavelength, ammonium, DOC and low total phenolic 

compounds concentration (Figure 17). 

The presence of Cyanobacterial speCles was strongly positively related to nutrient 

concentration for experiments 1 and 2 and negative related to total phenolic compounds, 

absorbance at different wavelength, and dissolved organic carbon conccntration for 

experiment 3 (Figure 18). Presence of Cyanobacterial species at the lowest light level 

(experiment 3 - September) were more positively related to high phosphorus concentration. 

Concerning specific species relation with environmental variables, the presence of 

Microcyslis holsalica and Anabaena circinalis was strongly positively related to low 

concentration of total phenolic compounds. 

For experiment 3, in September, when MicroGyslis and Anabaena were more abundant, the 

presence of both species was strongly positively related to high concentrations of ammonium 

and phosphorus and low values of absorbance at different wavelengths (Figure 19). 

Regarding species and environmental data relations, the presence of Microcyslis was 

positively related to high concentration of total nitrogen and chlorophyll a, and presence of 

Anabaena was positively related to high phosphorus and ammonium concentration and low 

absorbance of the samples al different wavelengths. 
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Figure 18. Correspondence analysis for ail cyanobacterial species in different months. Betvveen samples first number: Experiment 

number, N: Nutrient addition, B: Barley addition, MO: Organic matter addition, C-Co: Control, 4-D4: Day 4 of incubation 

experiment, LI: High light level, L2: Intermediate light level, L3: Lo,v light level. 
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Figure 19. Correspondence analysis Microcyslis and Anabaena in different months. Between samples first number: Experiment 

number, N: Nutrient addition, B: Barley addition, MO: Organic matter addition, C-Co: Control, 4-D4: Day 4 of incubation 

experiment, LI: High light level, L2: lntermediate light level, L3: Low light level. 

Samples and environmental data Species and environmental data 
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Spccics from the group Chrysophyceae, Cryptophyceae and Chlorophyceae constituted lhe 

groups with the highest biomass in ail the experiments. Conce01ing species composition for 

experiment 1 samples at lowest light level were positively related to high nitrate, ammonium 

and total dissolved phosphorus concentration, excepting samples with barlcy addition. 

Species in samples at the highest and intermediate light level were positively related to total 

phosphorus and nitrogen concentrations (Figure 20). Presence of species from the group 

Dinophyceae was positively related to barley addition at high light levels. Experiment species 

composition was dominated by individuals belonging to the group Bacillariophyceae 

followed by Chlorophyceae. Taxonomical distribution in groups for intermediate and lowest 

light level was positively related to organic matter concentration in the samples (Figure 20). 

ln experiment 2, light was an important factor for species variabilily. Abundance of species 

in the samples at the highest light intensity was positively related with ammonium 

concentration (Figure 21). Species distribution was similar for sanlples with organic matter 

and barley addition, and for both additions plus nulrients, but they were joined in different 

clusters for the highesllight intensity. For the intermediate and lowest light intensity, species 

were similar for ail the treatments. Abundance of species in the samples with barley addition 

al the intermediate light level was positively related to high total phenolic compounds and 

DOC concentrations. Abundance of species in the samples at the lowest light intensity was 

positively related to high values of absorbance at 440 nm (Figure 21) 
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Figure 20. Correspondence analysis for ail species and groups in experiment 1 - Jlme 2007. Between samples flfSt number: 

Experiment Humber, N: Nutrient addition, B: Barley addition, MO: Organic matter addition, C-Co: Control, 4-04: Day 4 of 

incubation experiment, LI: High light level, L2: lntennediate light level, L3: Low light leve!. Between groups c: Cryptophyceae, x: 

Chrysophyceae, d: Bacillariophyceae, p: Dinophyceae, v: Chlorophyceae, b: Cyanophyceae 

Samples and environmental data Groups, samples and environmental data 
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Figure 21. Correspondence analysis for ail species and groups in expcriment 2 - July 2007. Between samples first number: 

Experirnent number, N: Nutrient addition, B: Barley addition, MO: Organic matter addition, C-Co: Control, 4-D4: Day 4 of 

incubation experiment, L 1: High light level, L2: lntennediate light level, L3: Low light level. Between groups c: Cryptophyceae, x: 

Chrysophyceae, d: Bacillariophyceae, p: Dinophyceae, v: Chlorophyceae, b: Cyanophyceae. 

Samples Groups, samples and environmental data 
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Species composition 111 experiment 3 (September) was similar for the nutrient addition 

depicting the level of exposition to the Iight. Samples with barley, organic matter and nutrient 

addition presented a different taxonomical composition at the lowest light level (Figure 22). 

Taxonomical composition of samples with barley and organic matter addition plus nutrients 

was different from barley and organic matter addition alone and similar to nutricnt 

composition alone, which suggests that in presence of nu trient there is no effect of barley and 

organic matter addition on the tiL'Xonomical composition. Taxonomical composition of 

samples with barley and organic matter addition was positively related to total dissolved 

phosphorus concentration at the highestlight intensity (the identity of the species involved is 

an arbitrary function that was not investigated). At the intennediate light intensity, 

taxonomical composition of samples \Vith barley and organic matter addition was positively 

related to total phenolic compounds and DOC concentration (Figure 22) 

Chlorophyceae was positively related to nutrient concentration. Dinophyceae \Vas positively 

related to DOC and total phenolic compounds concentration. Chrysophyceae was positively 

related to samples \Vith barley and organic matter addition at aillight levels (Figure 22). 



50 

Figure 22. Correspondence analysis for ail species and groups in experimcnt 3 - September 2007. Between samples first number: 

Experimellt Ilumber, N: Nutnent addition, B: Barley addition, MO: Organic matter addition, C-Co: Control, 4-04: Day 4 of 

incubation experiment, LI: High light level, L2: Intermediate light level, L3: Lm.v light level. 8etween groups c: Cryptophyceae, x: 

Chrysophyceae, d: Bacillariophyceae, p: Dinophyceae, v: Chlorophyceae, b: Cyanophyceae. 
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CHAPTER IV: DISCUSSION - CONCLUSIONS 

Although summer cyanobacteriaJ bJooms have been reported in the Missisquoi Bay from 

1998 to 2006, in 2007 this was unfortunately not the case. The only advisory warning 

announcement of a cyanobacterial bloom was given at the beginning of September 2007, due 

to a slight increase in the abundance of Cyanobacteria. Yet on the basis of data from our 

general limnological characterization of the lake, there was no clear change in Iimnological 

parameters for the lake in 2007 that we could use to explain the absence of a cyanobacterial 

bloom (Figure 3, Table 1). 

Our experiments tried to assess the effect of dissolved organic matter on the growth of 

Cyanobacterial species. Despite the unfortunate absence of a bloom in the summer of 2007, 

this work could evaluate the effect of dissolved organic matter addition under different 

factors (Iight, nutrient status, fonn of DOM added) on lake phytoplankton communities and 

in increases on emerging communities of Cyanobacteria in late summer (September 2007 ­

3rd experiment). 

Nutrient and light influence were evaluated as important factors controlling the effect of 

DOM on phytoplankton growth (Table 9). It was difficult to attribute changes in the 

concentrations of nutrients to fluctuations in populations of one particular group. In generaJ, 

there was decrease in the concentration of ail nutTients for ail the treatments (especially for 

ammonium, nitrate and total dissolved phosphoms) as result of a high consumption rate that 

indicates strong nu trient limitation of the phytoplankton in the incubation experiments, 

especially for experiments 2 and 3 (July and September 2007). Strong light limitation for 

experiments was demonstrated by significant increase of chlorophyll a for the treatments at 

the highest light level (Figures 6, 7 and 8). High nutrient consumption at low light levels 

suggested predominant heterotrophic uptake on experiments by increased bacterial 

development or direct heterotrophic uptake from algae, especially when Dinophyceae was 

predominant as a group (Stoecker 1999; Tuchman et al. 2006). 
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Nutrient limitation for algal species was important for the experiments. As suggested by Klug 

and coworkers (Klug et al. 2001; Klug 2005) when algae and bacteria are competing directly 

for availability of nutrients, there is a strong influence on the community structure of original 

algae populations and Iight intensity for the determination of the group of organisms that 

predominate. 

Chlorophyceae, Bacillariophyceae and Dinophyceae constitute the biggest part of the 

photosynthetically active biomass for the experiments. There was an ll1crease 111 

Chlorophyceae, Bacillariophyceae and Cyanophyceae with addition of nutrients, and an 

increase in the proportion of Dinophyceae with the addition of barley and organic matter 

particularly from the experiment made in September at high light intensities. Proportions of 

Bacil1ariophyceae were strongly related with low concentrations o[ organic matter. Il appears 

that organic matter supplements allowed the dinol1agellates to more strongly outcompete the 

diatoms. 

For experiments 1 and 2 small populations of Chlorophyceae originally present in the 

samples took advantage at high light levels and dominated, followed in proportion by 

Bacillariophyceae (Figure 9, Figure 10). This is consistent with the idea that the chlorophytes 

are superior competitors under eutrophic conditions in high light (shallow) environments, by 

virtue of their superior growth rates. In experiment 2, there was an important increase in the 

proportions of Dinophyceae when we added barley, organic matter and organic malter and 

nutrients for the lowest light intensity (Figure 10); probably higher heterotrophic 

consumption of increased nutrients by bacteria, provides them an additional food source as 

mixotrophs (Stoecker 1999) (Figure 10). Communities in experiment 3 were not strongly 

light limited. The increase of diatoms populations with the addition of nutrients suggested 

pure nutrient limitation ofphytoplankton community biomass. 

The use of resin XAD-8 was adequate to increase significantly the concentration of DOM, 

DOC and total phenolic compounds for the corresponding treatrnents in the incubations 

experiment (Figure 4). The natural concentration of total phenolic compounds for the bay 
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were already quite high, relative to a group of lakes in other countries (Box 1983; Hilt et al. 

2006). 

Concentrated dissolved organic matter was taken in June for the experiment made in July 

(experiment 2) and in August for the experiment made in September (experiment 3), from 

natural incoming water to Lake Champlain from Pike River. There was an important 

difference between results conceming dissolved organic matter characteristics and responses 

in treatments for experiment 2 and experiment 3. As suggested by GeBer (1985) and Granéli 

et al. (1999), responses to such concentrated dissolved matter can be related with seasonal 

changes in watershed input and process, indicating differences in the quality of dissolved 

organic matter entering to the lake. The presence of easily photodegradable compounds in the 

concentration of dissolved organic matter was confinned in ail the experiments (Figure 4). 

For the second experiment in the early summer, dissolved organic matter had a biggest 

proportion of easily photodegradable low molecular weight compounds, perhaps from vegetal 

material rich in lignins, reflected in absorbance parameters (Annex 2). For the third 

experiment in the late summer the largest proportion of dissolved organic matter concentrated 

from Pike River was heavier compounds that might have come from runoff of agricultural 

activities developed in summer (Figure 14, Figure 15; Annex 2) 

Regarding effect of DOM on phytoplankton communities (Table 9), increased light intensity 

could promote the release of low molecular compounds that ean be related with the decrease 

of autotrophic algal populations predominant in experiment 2 and cyanobacterial populations 

in experiment 3. Aiso photodegradation of nutTients can improve bacterial growth that can 

directly compete with algae and reduce it abundance; as we didn't measure bacterial 

production we couldn't make an affinnation from the last statement. We recommend taking 

measures of bacterial growth that might clarify whether changes in the predominance of 

species are due to heterotrophic or mixotrophic ability of sorne algal groups and competition 

for resources among species, or direct interaction of compounds released by degradation of 

dissolved organic matter or barley in the growth of some algal species. 
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Cyanophyceae was an important group only in the third experiment, in September 2007 

(Figure 11). There was a significant effect on the decrease of final chlorophyll a 

concentration with the addition of barley and organic matter for experiments 2 and 3, but the 

effect was only present in the interaction with nutrients (Table 3, 4). Proportions of 

Cyanophyceae were positively related to low concentrations of total phenolic compounds and 

dissolved organic matter. The effect was strongest for barley at the highest light levels for 

experiment 3, and for organic matter at low light level for experiment 2. 

Growth of Microcyslis was strongly nutrient limited (Figure 12). With the addition of barley 

and organic matter there was a decrease in the final biomass of Microcyslis for the 

experiments especially for the intermediate light level (Figure 13) and high light level (Table 

7, Figure 12). There is evidence than at highest light levels, the release of phenolic 

compounds that can inhibit growth of phytoplankton is strongest (Pillinger et al. 1994), and it 

can be one of the reasons for the significant effect of the addition of organic matter at high 

light intensities. Organic matter and barley both decreased the positive effect of nutrients in 

the growth of cyanobacterial species (Table 7). Negative effect on growth was statistically 

significant with barley addition (Table 8) 

ln conclusion, phytoplankton growth was strongly dependent on the availability of nutrients 

in Missisquoi Bay in 2007. The results of these experiments suggest that total biomass was 

Iimited in the lake in summer 2007 by a lack of nu trient recycling in the lake. Significant 

variation in taxonomical composition of the samples based in capacity of groups as 

Cyanophyceae and Chlorophyceae to increase growth with nutrients at high light intensities 

was presented for incubation experiments. The heterotrophic and mixotrophic ability of 

groups such as Dinophyceae and Bacillariophyceae allowed them to increase growth at low 

light levels, improved by the probable augmentation of bacteria (used as nutrition source) 

with the addition of dissolved organic matter. Probable release of photochemical degradation 

products (as total phenolic compounds) after the addition of barley and dissolved organic 

matter in the experiments (as demonstrated by spectrophotometric changes (Annex 2) 

inhibited the growth of phytoplankton, particularly Cyanobacterial species as Microcyslis 

The decreased growth was not sufficient to eliminate these toxic species, however. ln 
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conclusion, it has been shown that dissolved organic carbon compounds both naturally 

ccurring and those added with barley extract, have the capacity to stTongly negatively affect 

cyanobacterial growth rates, and to positively affect certain competing groups. The inhibitory 

effect is intimately related to Iight levels, and therefore the effect will be useful in control 

situations only when the right Iight conditions can be assured. 



ANNEXES
 

Annex 1. ANOYA of parameters related with characteristics and composition of DOM for the incubations.
 

TN (ml!/L TDN ml!/L) NO) (maiL) Ammonium (m~L)  TP (ml!/L TPD (maiL) 
Exp. 1 Exp. 2 Exp. 3 Exp. 2 Exp. 3 Exp. 1 Exp.2 Exp. 3 Exp. 1 Exp. 2 Exp. 3 Exp. 1 Exp.2 Exp. 3 Exp. 1 Exp.2 Exp. 3 

RSquare 1.00 1.00 1.00 0.97 0.99 0.91 1.00 0.58 0.42 093 0.99 0.93 0.99 1.00 0.82 0.88 0.63 
RSquare Adj 099 099 1.00 0.94 097 0.81 0.99 0.19 -0.21 0.86 0.98 0.85 0.98 099 0.60 0.77 0.27 
Root Mean Square 0.06 006 0.02 0.11 0.03 0.26 005 0.00 0.05 0.03 002 0.01 000 0.00 0.01 000 0.00 
Error 
Mean of Response 1.98 1.49 0.93 1.05 0.55 1.07 0.66 000 o 13 0.09 0.15 0.09 0.07 0.08 0.03 0.01 0.02 
Observations 22.00 36.00 36.00 36.00 3400 2200 3600 36.00 2200 3500 36.00 22.00 3600 36.00 2100 3600 35.00 
(or Sum Wgts) 

Light Level 0.01 005 0.00 <.0001 0.00 0.04 0.00 
Nutrients <.0001 <.0001 <.0001 <.0001 <0001 <0001 <.0001 0.02 0.00 <.0001 <.0001 <0001 <.0001 000 0.00 
Light 001 <0001 0.02 0.00 
Level *Nutrien ls 
Barley 0.02 <.0001 
Light Level *Barley 0.04 0.00 0.05 0.01 
Nutrients*Barley 0.05 0.04 
Light 0.03 0.01 
Leve! *Nutrients 
*Barley 
OM <.0001 <.0001 0.02 <.0001 0.01 0.00 000 <.0001 0.03 
Light Level*OM 0.00 0.00 <.0001 0.04 0.00 0.01 
NlItrients*OM 006 0.01 0.00 0.04 
Light 0.04 0.01 0.01 0.04 
Level *NlItrients*OM 
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Annex 2. Parameters related to dissolved organic matter characterization 
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Annex 3. Concentration of nutrients for the incubation experiments 
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