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RÉSUMÉ 

La dispersion des individus relie les populations animales entre elles. C'est pourquoi il est 
important de bien connaître les facteurs qui déterminent la distan.ce parcourue par les 
animaux lors de leur dispersion. La structure génétique spatiale d'une population nous donne 
des indications sur la distance parcourue par les individus, elle est le reflet de la répartition 
spatiale des individus avec différents degrés d'apparentement. En étudiant la structure . 
génétique spatiale d'une population sous différentes conditions environnementales, nous 
pouvons identifier les facteurs qui ont joué un rôle dans l'évolution du comportement de 
dispersion d'une espèce. L'objectif de ce mémoire est de déterminer si de fortes variations de 
conditions environnementales peuvent influencer la répartition spatiale des individus 
apparentés chez une espèce solitaire. Nous avons étudié une population sauvage de tamias 
rayés (Tamias triatus), un petit rongeur solitaire de l'Amérique du Nord, pendant six années 
consécutives. Durant ces six années, la population a connu de grandes variations de 
conditions environnementales . En effet, les jeu nes tamias peuvent se disperser lorsqu'il y a 
une grande production de graines ou bien lorsqu'il n'y a peu de graines produites. Les jeunes 
se dispersent au printemps ou à l'automne selon la saison de reproduction. Les jeunes qui se 
dispersent au printemps ne font pas face aux mêmes conditions environnementales que les 
jeunes qui se dispersent à l'automne. De plus, l'effectif de la population a beaucoup varié 
selon les saisons et les années de l'étude. Nous avons étudié l'impact de ces conditions sur la 
distance de dispersion parcourûe par les jeunes et sur la structure génétique spatiale de la 
population à une échelle très fine (25ha). Notre étude révèle certains effets de la variation des 
conditions environnementales sur le patron de dispersion des jeunes et suggèrent que la 
structure génétique spatiale d'une espèce solitaire peut être flexible et varier selon les 
conditions environnementales. De plus, nos résultats suggèrent que la structure génétique 
spatiale des femelles varie selon les conditions environnementales, alors que ce n'est pas le 
cas pour les mâles . Peu d'études ont trouvé une telle variation chez une espèce solitaire et à 
une échelle spatiale aussi fine . Les résultats de cette étude ont des implications importantes 
pour notre compréhension des facteurs qui régissent les patrons de dispersion, la structure 
génétique et la structure sociale des animaux et nous permettent de mieux cerner les causes 
évolutives à l'origine du comportement de dispersion. 

Mots clés : varibilité environnementale, structure génétique spatiale, dispersion juvénile, 
Tamias striatus 



CHAPITRE I. INTRODUCTION GÉNÉRALE 

1.1 Importance écologique et évolutive de la dispersion 

Les espèces sont divisées en plusieurs populations qui sont reliées entre elles par la 

dispersion des individus (Thomas et Kunin 1999; Danchin, Giraldeau et Cézilly 2005). La 

dispersion est généralement définie comme le mouvement d'un individu de son lieu de 

naissance vers un lieu où il se reproduira (dispersion de naissance) ou le mouvement d'un 

individu entre deux sites de reproduction (dispersion de reproduction; Johnson et Gaines 

1990; Danchin, Giraldeau et Cézilly 2005). En phase de dispersion, les individus peuvent 

parcourir de petites distances et rester dans leur population de naissance, voire sur leur site 

de naissance (philopatrie), ou bien parcourir de grandes distances et ainsi joindre une autre 

population ou coloniser un nouvel habitat. La distance parcourue par un individu lors de sa 

dispersion varie selon les espèces, le sexe et les conditions environnementales (Clobert et 

al. 2001). 

Tout facteur agissant sur les distances de dispersion affecte également l'ensemble de la 

dynamique des populations, des espèces et des communautés (Clobert et al. 2001; Leibold 

et al. 2004; Ronce 2007). En effet, la dispersion des individus peut avoir un impact 

important sur la persistance des populations et sur les taux de colonisation et d'extinction 

dans une métapopulation (Hanski 2001; Bowler et Benton 2005; Garant, Farde et Hendry 

2007). Par exemple, l'émigration peut accroître le risque d'extinction d'une population 

lorsque celle-ci est de faible densité alors que l'immigration peut éviter l'extinction d'une 

population en augmentant sa taille ou favoriser la colonisation d'un habitat par une espèce 

(Bowler et Benton 2005; Brown et Kodric-Brown 1977; Hanski 2001). De plus, chez les 

métapopulations dont certaines populations montrent des cycles de fluctuation importants 

de ses effectifs avec un risque élevé d'extinction locale, la dispersion peut augmenter le 

synchronisme entre les populations et ainsi provoquer l'extinction simultanée de plusieurs 

populations (Bowler et Benton 2005; Ronce 2007). 
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Le mouvement de gènes (flux génique) induit par la dispersion des individus entre les 

populations a également d'importantes conséquences évolutives (Barton 2001; Garant, 

Farde et Hendry 2007) . En effet, en apportant des allèles d'une population vers une autre, 

les flux géniques peuvent limiter les différences génétiques entre les populations créées par 

la sélection naturelle ou la dérive génique (Slatkin 1987; Hendry, Taylor et McPhail 2002; 

Garant, Farde et Hendry 2007). À l'opposé, un flux génique réduit entre les populations 

peut favoriser la divergence évolutive de ces populations et possiblement mener à la 

spéciation par sélection naturelle ou dérive génique (Slatkin 1987; Barton 2001). Ensuite, 

lorsque les populations sont de petite taille, les flux géniques peuvent empêcher les effets 

négatifs retiés à la dépression de consanguinité (Ingvarsson et Whitlock 2000; Hedrick 

2004 ). Enfin, les flux géniques augmentent la diversité génétique à l' intérieur de chaque 

population, ils fournissent ainsi la matière première à la sélection naturelle et peuvent 

augmenter le potentiel d'une population à s'adapter aux changements de son 

environnement (Tallmon, Luikart èt Waples 2004; Garant, Farde et Hendry 2007). 

Ainsi, le comportement de dispersion tient un rôle central dans la dynamique et l'évolution 

des populations et des espèces. Les facteurs qui influencent le comportement de dispersion 

des individus auront d'importantes conséquences écologiques et évolutives pour les 

populations sauvages et pour la distribution, la persistance et l'évolution des espèces . 

1.2 Évolution du comportement de dispersion 

Le comportement de dispersion a évolué en réponse à plusieurs pressions de sélection 

· certaines qui favorisent la dispersion et d'autres qui favorisent plutôt une la philopatrie ou 

une dispersion limitée. Le comportement de dispersion d'une espèce est le résultat d'un 

équilibre entre ces facteurs . 

Les risques de prédation et les coûts énergitiques associés à la dispersion sont deux forces 

importantes en faveur d'une dispersion limitée ou de la philopatrie (Johnson et Gaines 
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1990; Byrom et Krebs 1999; Jones 1988; Ims et Andreasson 2000). De plus, les immigrants 

peuvent être victime d'agression de la part des résidents dans leur nouvel habitat et perdre 

leur statut social (Lambin, Aars et Piertney 2001). En outre, la familiarité avec le milieu de 

naissance peut être très importante pour l'acquisition des ressources. nécessaires à la survie 

et à la reproduction. En se dispersant, les individus se privent de cet avantage (Lawson 

Handley et Perrin 2007). Toutefois, la dispersion comporte plusieurs avantages qui ont 

favorisé son évolution en dépit des coûts qui y sont associés. Par exemple, le coût associé à 

la compétition pour l'accès à des ressources importantes pour le succès reproducteur 

favorise la dispersion. En effet, lorsque les conditions sont mauvaises suite à une 

augmentation de la densité ou à une diminution de la disponibilité des ressources, les 

individus parcourent de plus grandes distances de dispersion afin de trouver un 

environnement plus favorable. (ClobeJt et al. 2001; Bowler et Benton 2005; Ronce 2007) . 

La compétition est d'autant plus coûteuse lorsqu 'elle a lieu entre des individus parents . En 

effet, en entrant en compétition avec des individus apparentés un individu diminue non 

seulement son propre accès aux ressources, mais également celui des individus avec 

lesquels il partage des allèles. La sélection de parentèle s'exerce selon les conséquences du 

comportement d'un individu sur la survie et/ou la reproduction d'individus qui sont 

génétiquement proches (Danchin, Giraldeau et Cézilly 2005). Ainsi, la sélection de 

parentèle pourrait favoriser de grandes distances de dispersion car elle diminue la 

compétition entre individus parents (Bowler et Benton 2005). La sélection de parentèle 

pourrait également favoriser des comportements qui diminuent les coûts de la proximité 

spatiale des individus apparentés comme une diminution des interactions agonistiques et 

une augmentation de la coopération entre parents (Lambin, Aars et Piertney 2001; Bowler 

et Benton 2005). Parfois, les bénéfices de la tolérance et de la coopération en terme de 

valeur phénotypique individuelle et inclusive pourraient êtres suffisamment importants 

pour favoriser de petites distances de dispersion malgré les coûts engendrés par la 

compétition entre individus parents. L'équilibre entre les coûts et les bénéfices de la 

proximité spatiale des individus apparentés varie selon le type de milieux et de ressources 

utiljsées par une espèce (Bowler et Benton 2005). Par exemple, chez les espèces pour 

lesquelles les sites de reproduction sont rares ou avec de grands risques de prédation, la 

dispersion pourrait être plus coûteuse que la compétition entre individus apparentés ce qui 



favoriserait l'évolution d'une dispersion limitée et la coopération entre les individus 

parents (Emlen 1982; Salomon 2003). 
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Ensuite, la dispersion réduit les risques de reproduction entre individus apparentés. En se 

dispersant, les individus évitent de produire des jeunes consanguins avec une survie ou une 

reproduction plus faible (Lawson Handley et Perrin 2007). Toutefois, il est difficile de 

déterminer si la dispersion a évolué suite aux effets néfastes de la compétition ou de la 

consanguinité puisque la dispersion diminue l'impact des deux facteurs (Moore et Ali 

1984; Bowler et Benton 2005; Ronce 2007). 

Enfin, lorsque une espèce exploite des ressources qui sont variables et non corrélées dans 

l'espace ou lorsqu'elle utilise des habitats qui sont temporaires, la dispersion permet aux 

individus d'avoir accès à un habitat de meilleure qualité (Southwood 1962; Denno et al. 

1996; Bowler et Benton 2005). Par exemple, l'extinction de l'habitat est considéré comme 

étant un des principaux facteurs à l'origine de l'évolution de la dispersion chez plusieurs 

espèces d'insectes qui utilisent des habitats qui sont éphémères (Southwood 1962; Bowler 

et Benton 2005). 

1.3 Plasticité du comportement de dispersion 

Les conditions environnementales peuvent varier dans le temps et dans l'espace. 

L'équilibre entre les coûts et les bénéfices de la proximité et des interactions entre les 

individus apparentés est donc susceptible de varier entre les populations chez une même 

espèce (Salomon 2003; Ronce 2007) . Ainsi, les chercheurs ont commencé à considérer les 

distances de dispersion comme conditionnelles et plastiques : les jeunes pourraient ajuster 

leur distance de dispersion selon les conditions environnementales présentes au moment de 

leur dispersion (Salomon 2003; Lawson Handley et Perrin 2007; Clobert et al. 2009; Waser 

et Jones 1983; Lambin 1994; Pusey et Wolf 1996; Clobert et al. 2001; Bowler et Benton 

2005; Lucia et al. 2008; Walker, Sunnucks et Taylor 2008). Par exemple, il y a souvent 

une relation entre la densité d'une population, la disponibilité des ressources, et la distance 
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parcourue par les individus lors de leur dispersion (revue par Lambin, Aars et Piertney 

2001). Toutefois, le sens de cette relation varie selon les espèces. Chez certaines espèces, 

une augmentation de la densité et une diminution de la disponibilité des ressources favorise 

de plus grandes distances de dispersion vraisemblablement parce les habitats libres ou les 

sites de reproduction à proximité du site de naissance sont rares et parce que les coûts 

associés à la compétition entre individus parents sont importants (Lambin, Aars et Piertney 

2001). Par exemple, les cicadelles (Delphacidae) peuvent prendre deux formes, une forme 

aillée qui se disperse ou une forme sans ailes qui ne se disperse pas, lorsque la population 

est à forte densité, il y a une augmentation de la production de la forme ailée (Denno et al. 

1991). Chez le faucon Fa/co tinnunculus, la variation des distances de dispersion entre les 

années est reliée à la quantité de nourriture disponible durant la première année des jeunes : 

les jeunes parcourent une plus grande distance lorsqu'il y a peu de nourriture (Andraensen, 

Verwip et Dhondt 1998). À l'opposé, chez certaines espèces, une augmentation de la 

densité et de la compétition diminue les distances de dispersion (Jones et al. 1988; Lambin, 

Aars et Piertney 2001; Richardson et al. 2002; Bowler et Benton 2005; Matthysen 2005). 

Par exemple, chez le rongeur Dypodomys spectabilis, la distance parcourue lors de la 

dispersion des jeunes est plus faible lorsque la densité de la population est élevée (Jones 

1988). Une dispersion limitée à forte densité pourrait refléter une augmentation de la 

tolérance et de la coopération entre pairs lorsque les ressources sont limitées (Emlen 1982; 

Lambin et Krebs 1991; Lambin, Aars et Piertney 2001; Salomon 2003). 

1.4 Différences sexuelles 

L'importance relative des différentes forces à l'origine du comportement de dispersion 

varie selon les espèces et les conditions environnementales, mais également selon le sexe. 

Chez les mammifères polygynes, les mâles ont tendance à parcourir une plus grande 

distance lors de leur dispersion de naissance que les femelles. On dit alors que la dispersion 

de naissance est biaisée en faveur des mâles (Lawson Handley et Perrin 2007; Clobert et al. 

2001 ). Chez les oiseaux, la dispersion de naissance est souvent biaisée en faveur des 

femelles, c'est-à-dire que les femelles parcourent une plus grande distance de dispersion 

que les mâles (Greenwood 1980). Ces différences sont généralement attribuées à 



l'importance relative de la compétition intrasexuelle et de l'évitement de la consanguinité 

pour chaque sexe dans leur système de reproduction (Greenwood 1980). 
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Chez les mammifères polygynes, le succès reproducteur des mâles est limité par l'accès 

aux femelles, alors que celui des femelles est plutôt limité par l'acquisition des ressources 

(Greenwoo~ 1980; Emlen et Oring 1977). En évitant de se disperser, les femelles 

bénéficient d'une plus grande familiarité avec leur lieu de naissance pour l'acquisition des 

ressources. Alors que les mâles tentent d'éviter la compétition avec leurs pairs pour les 

partenaires sexuels en parcourant une plus grande distance de dispersion (Greenwood 

1960; Moore et Ali 1984; Lawson Handley et Perrin 2007). La dispersion des mâles 

pourrait également être dû à l'évitement de la consanguinité (Lawson Handley et Perrin 

2007). En effet, s'il n'y a pas de mécanisme de reconnaissance des pairs et que les femelles 

ont une dispersion limitée, les mâles doivent se disperser pour éviter de se reproduire avec 

une femelle apparentée (Lawson Handley et Perrin 2007). De plus, les femelles ont un plus 

grand investissement parental que les mâles (Trivers 1972). Ainsi, les coûts associés à une 

descendance consanguine devraient être plus importants pour les femelles. Les femelles 

devraient donc préférer les mâles immigrants ou peu apparentés (Bergeron et al. 20llb) et 

ainsi favoriser la dispersion des mâles (Lehman et Perrin 2003). La proximité spatiale des 

femelles, causée par une faible dispersion de naissance, pourrait favoriser l'évolution de la 

tolérance et la coopération entre voisines apparentées (Perrin et Goudet 2001). Ce 

phénomène a d'ailleurs été rapporté chez plusieurs espèces de mammifères sociaux et non­

sociaux (Lambin et Krebs 1993; Mappes, Ylonen et Viitala 1995; Lambin, Aars 'et Piertney 

2001; Ratnayeke, Tuskan, et Pelton 2002; Le Galliard et al. 2006; Lawson Handley et 

Perrin 2007; Maher 2009). 

Chez les oiseaux, les mâles sont souvent socialement monogames et ils monopolisent les 

ressources; les mâles défendent un territoire et tentent d'y attirer une femelle. La familiarité 

avec le site natal est importante pour les mâles parce qu 'elle permet une défense plus 

efficace du territoire et une meilleure acquisition des ressources (Greenwood 1980; 

Danchin, Giraldeau et Cézilly 2005). De plus, la proximité spatiale des mâles apparentés 
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pourrait lirrtiter les agressions entre mâles et favoriser le recrutement de leurs jeunes dans la 

population (Greenwood 1980; MacColl et al. 2000; Lee et al. 2009). C'est pourquoi, nous 

trouvons généralement des distances de dispersion plus courtes pour les mâles que pour les 

femelles chez les oiseaux. Les femelles parcourraient de plus grandes distances de 

dispersion pour trouver un partenaire et pour éviter la consanguinité (Greenwood 1980). 

Il semble y avoir une interaction entre le sexe et les conditions de l'environnement (Ims et 

Hjermann 2001) . Par exemple, la compétition entre pairs peut induire la dispersion d' un 

sexe seulement (Lambin, Aars et Piertney 2001). Chez une espèce de diptères de la famille 

des Tephritidae (Paroxyna plantaginis) le taux d'émigration des femelles est pos itivement 

relié à la densité alors que le taux d'émigration des mâles semble indépendant de la densité 

(Albrectsen et Nachrnan 2001). Chez la plupart des espèces de vertébrés avec une 

dispersion biaisée en faveur d'un sexe, il semble que la compétition affecte surtout le sexe 

qui se disperse le moins (Waser et Jones 1983; Jones 1988; Lambin, Aars et Piertney 

2001). Chez les oiseaux, la densité et la compétition pour les ressources affectent 

principalement le comportement de dispersion des mâles (Lambin, Aars et Piertney 2001) . 

Alors que chez les mammifères, la distribution et la disponibilité des ressources influencent 

principalement le comportement de dispersion et la répartition spatiale des femelles (Jannet 

1978; Jones 1988; Lambin 1994; Cutrera, Lacey et Busch 2005; Randall et al. 2005; 

Schradin et Pilla y 2005; McEachern, Eadie et Van Vuren 2007; Lucia et al. 2008; Busch, 

Waser et DeWoody 2009). 

Ainsi, l'étude du comportement de dispersion de chaqu e sexe sous di fférentes conditions 

environnementales nous permet de mieux sa isir les facteurs qui sont à l' origine les 

comportements de dispersion que nous observons. 

1.5 Étude de la structure génétique spatiale d'une population 

L'étude de la distribution des individus dans une population en fonction de leur lien de 

parenté et de leur position géographique peut nous donner de précieuses indications 
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concernant le comportement de dispersion des individus et la structure sociale d'une 

espèce. Le développement de nouveaux outils moléculaires nous permet maintenant de 

connaître le lien de parenté qui unit les membres d'une population sauvage sans 

nécessairement devoir construire un pedigree détaillé de la population. L'étude de la 

structure génétique spatiale des populations sauvages utilise ces nouveaux outils 

moléculaires pour déterminer la répartition spatiale des individus apparentés dans une 

population. La structure génétique spatiale d'une population reflète donc les distances de 

dispersion des individus (Beek, Peakall et Heinson 2008; Cutrera, Lacey et Busch 2005; 

Dubey et al. 2008; Gauffre et al. 2008; Matocq et Lacey 2004). Lorsque les jeunes restent 

sur le site de reproduction nous détectons des agrégats d'individus apparentés et la 

structure génétique spatiale est détectable à une échelle très fine (Dobson 2007). Lorsque 

les jeunes se dispersent, mais parcourent une petite distance de dispersion, nous trouvons 

une relation positive entre la distance génétique et la distance géographique qui sépare les 

individus, c'est-à-dire que les individus apparentés sont situés proches les uns des autres 

(Cutrera et al. 2005; Maher 2009; Dobson 2007). Une grande distance de dispersion se 

traduit par une structure génétique détectable à une échelle spatiale bien plus grande et peut 

mener à une relation négative entre la distance génétique et la distance géographique qui 

séparent les individus (i.e. les individus apparentés sont situés loin les uns des au tres) ou 

bien à une distribution aléatoire des individus apparentés . 

L'étude de la structure génétique d'une population à une grande échelle spatiale nous 

permet de saisir l'importance des barrières physiques à la dispersion et d'estimer les flux 

géniques entre les populations (Manel et al. 2003; Storfer et al. 2007; Gauffre et al. 2008; 

Cullingham et al. 2009; Chambers et Garant 2010). L'étude de la structure génétique à une 

échelle plus fine nous permet de comprendre les pressions évolutives qui ont façonné le 

comportement de dispersion des espèces comme la compétition, la coopération et 

1 'évitement de la consanguinité (Matocq et Lacey 2004; Randall et al. 2005; Lawson 

Handley et Perrin 2007; McEachern, Eadie et Van Vuren 2007; Nutt 2008; Lucia et al. 

2008; Maher 2009). 

1 
1 
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Par ailleurs, l'étude de la structure génétique à fine échelle spatiale nous donne des 

indications sur la structure sociale d'une espèce et sur les facteurs qui l'influencent. 

L'apparentement joue un rôle central dans la formation de groupes sociaux chez plusieurs 

espèces (Hamilton 1964; Komdeur 1994; Wolf et Shermann 2007; Hatchwell 2009; Davis 

et al. 2011). En effet, l'étude de la structure génétique spatiale des espèces de mammifères 

sociaux révèle des agrégats d'individus apparentés et des groupes formés de femelles issues 

de la même lignée matrilinéaire (Armitage et Johns 1982; Hoogland 1982; Armitage 1998; 

Spong et al. 2002; Coltman, Pilkington et Pemberton 2003; Dobson 2007; Wolf et 

Shermann 2007; Nutt 2008). De plus, l'étude de la structure génétique des espèces sociales, 

à fine échelle et sous différentes conditions environnementales révèle que leur structure 

sociale et leur patron de dispersion sont flexibles et dépendent des conditions 

environnementales (Randall2005; Schradin et Pilla y 2005; Lucia et al. 2008). Par 

exemple, chez certaines espèces de rongeurs, lorsque les sites de reproduction sont limités, 

les jeunes restent dans le site maternel jusqu'à ce que les conditions s'améliorent et 

l' étendue de la structure génétique spatiale varie selon les années et les conditions 

environnementales (Salomon 2003; Lucia et al. 2008). 

Les espèces solitaires ne forment pas de groupes distincts d'individus apparentés . Par 

contre, des études récentes menées chez des rongeurs ont montré que les individus 

apparentés vivent proches les uns des autres (Matocq et Lacey 2004 ; Cutrera, Lacey et 

Busch 2005; McEachern, Eadie et Van Vuren 2007; Maher 2009; Pilot et al. 2010). De 

plus, comme chez les espèces sociales, ce phénomène serait surtout présent chez les 

femelles (Ratnayeke, Tuskan et Pelton 2002; Matocq et Lacey 2004; Cutrera, Lacey et 

Busch 2005; St0en et al. 2005; McEachern, Eadie et Van Vuren 2007; Maher 2009). 

Néanmoins, nous connaissons mal la flexibilité de la répartition spatiale des individus 

apparentés chez les espèces solitaires. L'étude de leur structure génétique spatiale à fine 

échelle et sous différentes conditions environnementales pourrait nous donner ces 

informations (McEachern, Eadie et Van Vuren 2007; Busch, Waser et DeWoody 2009; 

Pilot et al. 2010) . De plus, ce type d' étude pourrait nous donner de précieuses indications 

sur les facteurs à l'origine du comportement de dispersion et sur les facteurs qui sont 

susceptibles d'avoir une influence sur les flux géniques. 
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1.6 Objectifs 

L'objectif de ce mémoire est d'évaluer si de fortes variations de conditions 

environnementales peuvent avoir un impact sur la répartition spa tiale à fine échelle des 

individus apparentés chez une espèce solitaire. Ce mémoire vise également à déterminer si 

l'impact des conditions environnementales est le même pour les mâles et les femelles chez 

ce type d'espèce. Nous avons étudié une population sauvage de tamias rayés (Tamias 

striatus) durant six années consécutives qui présentaient une importante variation 

temporelle de conditions environnementales en terme de taille de population, de 

disponibilité des ressources alimentaires et de saison de dispersion. Nous avons étudié 

l'impact de ces variations sur les distances de dispersion des jeunes et sur la structure 

génétique spatiale à fine échelle de la population sur un site de 25ha dans la vallée de 

Ruiter (Monts Sutton, Estrie, Québec, Canada). 

1.7 Espèce modèle :le Tamia rayé (Tamias striatus) 

Le Tamia rayé (Tamias striatus) est un petit rongeur diurne des forêts de feuillus de 

l'Amérique du Nord. Animal solitaire, le tamia vit seul dans un terrier qu'il creuse 

rarement entièrement lui-même, mais qu'il utilise plutôt de ses prédécesseurs (Elliott 

1978). Composé d'un réseau complexe de chambres et de tunnels, le terrier est essentiel à 

sa survie durant l'hiver èt à sa reproduction (Elliott 1978). Le tamia rayé utilise un domaine 

vital plus ou moins circulaire d'environ 40 mètres de diamètre (Snyder 1982; Loew 1999) 

centré autour de son terrier et y concentre la majeure partie de ses activités (Elliott 1978). 

Les mâles et les femelles ont des domaines vitaux de tailles similaires (Mares, Watson et 

Lacher 1976). Les domaines vitaux de voisins peuvent se chevaucher (Elliott 1978). 

Le tamia est caractérisé par un système d'appariement de promiscuité (Bergeron et al. 

2011b). Les femelles peuvent entrer en oestrus jusqu'à deux fois par année (Snyder 1982). 
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La période d'œstrus d' u.ne femelle dure quelques heures. Dans la population que nous 

suivons, la reproduction a généralement lieu une seule fois par année : durant le mois de 

mars ou le mois de juin, selon les années . Lors de la saison de reproduction, les mâles 

parcourent parfois une grande distance pour s 'accoupler avec les femelles (Yahner 1978). 

Les jeunes passent leurs 40 premiers jours dans le terrier maternel et restent aux abords du 

terrier de une à deux semaines avant de se disperser (Snyder 1982). La femelle élève seule 

les jeunes (Elliott 1978). Loew (1999) a montré, par télémétrie, que les jeunes parcouraient 

en moyenne une centaine de mètres lors de la dispersion de naissa nce et que les jeunes 

mâles parcouraient une plus grande distance que les jeunes femelles (moyenne de 345m 

pour les mâles et 85m pour les femelles). 

L'hiver, le tamia rayé entre en torpeur (Snyder 1982), il dép end alors des gra ines 

accumulées dans son terrier comme source d' énergie (Humphries, Thomas et Kramer 

2001). Il se nourrit surtout de graines de hêtre (Fagus spp.), d' érable (Acer spp.) et de 

chêne (Quercus spp.). Il se nourrit également de bulbes d' érythrone d' Amérique 

(Erythronium americanum) et de claytonie de Caroline (Claytonia caroliniana) (Snyder 

1982). Le hêtre, l' érable et le chêne sont des arbres à paisson qui produisent des graines de 

manière épisodique. En conséquence, les années de grande abondance en ressources 

alimentaires alternent avec des années de production réduite ou nulle. Il n'y a pas de chênes 

sur le site d' étude, mais beaucoup de hêtres à grande feuille (Fagus grandifolia) . Ils ont 

produit beaucoup de graines à 1' automne 2006 et 2008, très peu en 2009, et aucune en 2007 

(Munro, T liomas et Humphries 200 8; Bergeron et al. 201 1a). La production de graines 

influence plusieurs facettes de l' écologie des rongeurs et particuli èrement du tamia rayé 

(Boutin et al. 2006; Bergeron et al. 20lla; Munro, Thomas et Humphries 2008; Landry­

Cuerrier et al . 2008). Par exemple, la production de graines de hêtre à grande feuille affecte 

leurs patrons de torpeur durant l ' hiver et leurs patrons d 'activité estivale (Landry-Cuerrier 

et al. 2008, Munro, Thomas et Humphries 2008). De plus, Bergeron et al. (2011a) ont 

montré que le tamia rayé est en mesure de synchroniser ses épisodes de reproduction avec 

la production de graines des hêtres . Les années de forte production, ils se reproduisent en 

juin, et les jeunes émergent du terrier natal et se dispersent en octobre lorsque les graines 

sont dispon ibles. Bénéficiant de ressources abondantes suite à une production mass ive de 
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graines, ils se reproduisent également au printemps suivant cette production et les jeunes se 

dispersent à la fin du printemps au mois de juin. Ainsi, les jeunes peuvent se disperser en 

automne lorsqu'il y a beaucoup de graines, mais ils ont peu de temps pour trouver un 

terrier adéquat avant l'hiver (3 mois). S'ils sont nés au printemps, les jeunes ont 5 mois 

pour trouver un terrier adéquat, mais il y a moins de graines disponibles. En 2009, il y a eu 

une émergence de jeunes à l'automne, mais très peu de graines produites . Ainsi, les jeunes 

qui se sont dispersés à l'automne 2009 ont eu peu de temps pour leur dispersion et peu de 

graines. La figure 1 illustre les épisodes de reproduction et de dispersion sur le site 

d'étude. 
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Figure 1.1 Variation saisonnière de la production de graines d'hêtre à grande feuille, des épisodes de 
reproduction et de dispersion et du nombre d'individus présents sur notre site d'étude (Vallée de 
Ruiter, Mont Sutton, Québec, Canada). P et A : Printemps et Automne de chaque année. Les lignes 
noires et les cercles noirs représentent la quantité de graines sur le site d'étude (g/m2

). Les 
histogrammes représentent le nombre d'individus présents sur le site. Les petites flèches verticales 
représentent les épisodes de reproduction et de dispersion : Rété : reprod_uction d'été (Juin) et 
dispersion en automne, Rprint. : reproduction au printemps (Mars) et dispersion à la fin du 
printemps. 

Le tamia rayé est un excellent modèle pour notre étude. D'abord, c'est un mammifère 

solitaire qui dépend pour sa survie et sa reproduction d'une ressource dont l'abondance 

varie dans le temps. Nous avons donc pu comparer les distances de dispersion des jeunes 

et la structure génétique des adultes en fonction des variations interannuelles 
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d'abondance de nourriture. Nous prédisons que l'abondance de la nourriture aura un 

impact sur les distances de dispersion et sur la structure génétique spatiale à fine échelle 

de la population. Deuxièmement, la synchronisation des épisodes de reproduction du 

tamia rayé avec la production de graines des hêtres produit deux saisons de dispersion 

pour les juvéniles : à l'automne ou au printemps. Nous avons donc pu déterminer l'impact 

de la saison de dispersion sur les distances de disper:sion des jeunes. Nous prédisons que 

les jeunes parcourent de plus petites distances de dispersion à l'automne qu'au printemps 

parce que le temps pour trouver un terrier adéquat est limité. Troisièmement, le tamia 

rayé doit posséder un terrier adéquat pour sa survie et sa reproduction et il existe une 

quantité limitée de terriers disponibles .dans un endroit donné. La compétition pour les 

terriers de qualité devrait donc être importante à forte densité et influencer les distances 

de dispersion des jeunes et la structure génétique spatiale de la population (Salomon 

2003). Quatrièmement, le comportement de dispersion des jeunes tamias est susceptible 

d'engendrer une structure génétique spatiale plus prononcée chez les femelles que chez 

les mâles à l'échelle de notre site d'étude (Goudet, Perrin et Waser 2002; Matocq et 

Lacey 2004; McEachern, Eadie et Van Vuren 2007). Finalement, le biais sexuel de 

dispersion des tamias laisse prenser que les causes évolutives du comportement de 

dispersion des femelles et des mâles sont différentes (Loew 1999). Nous supposons donc 

que les mâles et les femelles réagissent différemment aux variations des conditions 

environnementales s.ur le site d'étude; le comportement des femelles serait plus sensible 

à la disponibilité des ressources que celui des mâles . Ainsi, la structure génétique spatiale 

des femelles devrait varier davantage que celle des mâles. Nous testons ces hypothèses 

dans le chapitre suivant. 
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2.1 Summary 

The study of fine-scale spatial genetic structure under contrasted environmental conditions 

provides critical insights on the flexibility of dispersal behaviour and on the role of 

environmental conditions in shaping population relatedness and social structure. Yet, few 

studies have evaluated the effects of fluctuating environmental conditions on relatedness 

structure of solitary species in the wild. The aim of this study was to determine the impact of 

inter-annual variations in environmental conditions on the spatial genetic structure and 

dispersal patterns of a wild population of eastern chipmunks (Tamias striatus), a solitary 

rodent of North America . Eastern chipmunks depend on the seeds of masting trees for 

reproduction and for survival. We combined the analysis of the spatial genetic structure of 

adults with direct estimate of juvenile dispersal distance during six contrasted years with 

different dispersal seasons, population sizes and seeds production. We found that juveniles 

had a smaller dispersal distance in autumn than .in spring, particularly in autumn without a 

seed production and that male juvenile dispersed further than females . The extent of fine­

scale spatial genetic structure of adult females was variable and dependent on environmental 

conditions . In contrast, the spatial genetic structure of adult males did not vary with 

environmental conditions. We also found a stable difference in spatial genetic structure 

between males and females that was consistent with male biased dispersal behaviour. This 

study suggests that bath the dispersal behaviour and the relatedness structure in a population 

of a solitary species can be relatively labile and dependent on environmental conditions. 
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2.2 Introduction 

Studies of the spatial distribution of individuals with different degrees of relatedness within a 

population, or population spatial genetic structure, provide important insights on the dispersal 

patterns and social structure of a species (Matocq & Lacey 2004, Lawson Handley & Perrin 

2007, McEachern et al. 2007, Maher 2009). More specifically, the study of the spatial genetic 

structure of a population at a fine-scale provides information on the evolutionary causes of 

dispersal such as inbreeding avoidance, kin competition and cooperation (Matocq & Lacey 

2004, Randall et al. 2005, Lawson Handley & Perrin 2007). The relative importance of these 

evolutionary factors for the dispersal behaviour is likely to vary with the prevailing 

ecological conditions (e.g. food resources, population density), producing a social and a 

spatial geneqc structure that can vary temporally and spa.tially (Cutrera et al. 2005, Randall et 

al. 2005, Busch et al. 2009, McEachern et al. 2007). Analyzing how a changing environment 

affects genetic structure may therefore help us to infer the mechanisms generated by the 

interactions between ecological conditions and evolutionary causes involved in the evolution 

of bath dispersal and the social structure of a population (Clobert et al. 2001, Randa Il et al. 

2005, Lacey & Sherman 2007, Lucia et al. 2008, Busch et of. 2009) . 

Dispersal is male-biased in most mammals (Lawson Handley & Perrin 2007). In social species, 

females are often philopatric and female kin aggregate in space, while males disperse (Lawson 

Handley & Perrin 2007; Wolff & Sherman 2007). This dispersal pattern generates a more 

pronounced fine-scale genetic structure for females than for males (Spong et al. 2002, Coltman et 

ol. 2003; Dobson 2007). Farniliarity with the natal area may favour resources acquisition and may 

thus be an important evolutionary reason for female lirnited dispersal in mammals (Greenwood 

1980). The small dispersal distances of females are also considered to promote social tolerance 

and cooperation, which in turn could favour philopatry (Lambin et al. 2001 , Bowler & Benton 

2005). At the opposite, the avoidance of competition and inbreeding is often suggested to favour 

male dispersal and outweigh the cast of travelling through unfamiliar environment with 

increasing predation risk and energy expenditure (Lawson Handley & Perrin 2007). 
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The different selective forces responsible for the dispersal behaviour of each sex can produce sex­

specific responses to particular environmental conditions (Lambin et al. 2001). For example, in 

mammals, population densities generally affect the dispersal behaviour of the less dispersing sex, 

usually females, but the direction of this relationship varies among species (reviewed in Lambin 

et al. 2001). Hence, variable environmental conditions and population densities have the potential 

to create sex-dependent variations in the fine-scale genetic structure (Randall et al. 2005, Wolf & 

Sherman 2007, Lucia et al. 2008). 

Kinship plays an important role in the formation of social groups (Hamilton 1964, Wolff & 

Shermann 2007). While it is assumed that few solitary species form distinct kin groups, an 

increasing number of studies show that relatedness could be an important factor shaping the 

spatial distribution of solitary species (Matocq & Lacey 2004, Cutrera et al. 2005, McEachern et 

al. 2007, Maher 2009, Pilot et al. 2010). Indeed, studies of the genetic structure in solitary species 

showed a strong spatiale genetic structure amoung female at a fine-scale indicating that female 

kin often live close to each other (Ratnayeke et al. 2002, Matocq & Lacey 2004, Cutrera et al. 

2005, St0en et al. 2005, McEachern et al. 2007, Maher 2009). However, few studies have 

assessed the importance of environmental conditions in sha ping the relatedness structure of 

solitary species (McEachern et al. 2007, Busch et al. 2009, Pilot et al. 2010). This type of study ls 

critically needed to gain insights on the flexibility of the social structure of solitary species and on 

the factors influencing the relatedness structure of wild populations. 

The aim of this study was to determine the flexibility of the spatial genetic structure and dispersal 

behaviour of a solitary species and the role of environmental conditions in shaping the spatial 

distribution of individuals. More specifically, we assessed juvenile dispersal distances and the 

fine-scale spatial genetic structure of adults in an eastern chipmunk (Tamias striatus) population 

followed between 2005 and 2010, and experiencing contrasted environmental conditions. Eastern 

chipmunks are solitary and rely on the seeds of deciduous trees that they store in their burrow and 

use in winter between torpor bouts (Elliott 1978). The American beech (Fagus grandifolia), the 

dominant species in our study system, is characterized by large inter-annual fluctuations in its 

seed production in autumn (masting events) (Munro et al. 2008, Bergeron et al. 2011a). 
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Reproduction, above ground activity, and torpor expression during hibernation are tightly linked 

to masting events in this population (Landry-Cuerrier et al. 2008; Munro et al. 2008, Bergeron et 

al. 2011a). Chipmunks generally show one or two reproductive periods depending on the year, 

with juveniles emerging from their natal burrow in mid-May (spring) and early September 

(autumn). Summer reproduction and fall emergence is synchronized with beech seeds ripening 

during mast years. Spring reproduction and late spring juvenile emergence generally follows a 

mast in the autumn of the preceding year (Bergeron et al. 2011a) (Figure 2.1). Dispersal is 

obligate for juvenile eastern chipmunks and generally occurs within two weeks following 

emergence from the maternai burrow. Chipmunks rarely excavate a new burrow and usually use a 

vacant one (Elliott 1978). There is thus a limited number of potentia 1 burrows on our study site 

during juvenile dispersal event. The two distinct reproductive events generate two contrasted 

dispersal contexts for juveniles (Figure 2.1). Juveniles born in the autumn have about two months 

to find a suitable burrow before winter and to store seeds for winter survival. In contrast, 

juveniles born in the spring have about 5 months to do so. In addition, the extent of beech seed 

productions varied during juvenile dispersal (Figure 2.1). Reproductive events are the main 

determinant of population growth in this system (Figure 2.1; Bergeron et al. 2011a). 
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Figure 2.1 Seasonal variation in beech seed production, number of individuals on the site, 
reproductive event and dispersal event in the mounts Sutton eastern chipmunk population (Québec, 
Canada); Sp and A stand for spring and autumn of each year; black !ines and circles : American beech 
production (g/m2

); white histograms: number of individual on the site (including juveniles), small 
vertical arrows: reproductive and dispersal event, Rsp = spring reproduction in March and dispersal in 
May, Rsu = summer reproduction in June and dispersal in September. 

The dependence of eastern chipmunks on masting tree seeds and on finding a burrow for survival 

and reproduction makes them an excellent madel species to study the impact of environmental 

conditions on the dispersal and relatedness structure of solitary species. We expected that the 

need to find a sui tab le burrow before the winter, variation in beech seeds production, the decrease 

in burrow availability and the increase of competition for food at high population size would al! 

influence juvenile dispersal distances and the fine-scale spatial genetic structure of adults the 

following year. More specifically, we make the following predictions concerning the 

relationships between environmental conditions, juven.ile dispersal and genetic structure: i) A 

juvenile dispersal distance should be positively related to seed availability and negatively related 

to population size because of the spatial correlation of environmental conditions. Indeed, mast 

events are synchronized over a regional scale (Kelly & Sork 2002), and environmental conditions 

related with a mast ( e.g. seeds availability and population size) should th us be spatially correlated 

at a larger scale than the dispersal ability of chipmunks (Loew 1999). Consequently, a juvenile 

that disperses during non-mast period (spring or non-mast fall) or at elevated population size 
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would not find better conditions by dispersing at a longer distance; ii) Because time is limiting in 

the autumn, juveniles that disperse in autumn should disperse at shorter distances than juveniles 

dispersing in the spring; iii) If the dispersal behaviour of juveniles is reflected in the spatial 

genetic structure of adults the following year, we should detect variable spatial genetic structure 

on the study site and these variations should be consistent with the dispersal patterns of juveniles 

the preceding year. When dispersal distance is small, we should detect a strong spatial genetic 

structure at a fine-scale. In years of greater dispersal distances we should not find any significant 

spatial genetic structure or that the extent of the spatial genetic structure is larger. In contrast, 

when iv) Dispersal is male-biased in eastern chipmunks (Loew 1999; Chambers & Garant 2010), 

thus we should find a positive relationship between the genetic and the geographie djstance 

between two females, and an absence of relationship or a negative relationship between genetic 

and geographie distances between two males; v) Resource availability generally affects the 

distribution of females (Calloway & Boonstra 1989; Lambin et al. 2001) and tolerance and space 

sharing among related females have been reported in other rodent spec ies, particularly at low 

resources availability (Wolff & Sherman 2007). In this case, we expect that low resources 

availability particularly limits female 's dispersal distance and influence their spatial genetic 

structure. 

2.3 Material & Methods 

2.3.1 Study species 

Eastern chipmunks are diurnal and have limited social interactions. Home range size is typically 

of 40m of diameter, but it can vary greatly depending on age, gender and resources availability 

(Mares et al. 1976). Home ranges can overlap broadly, but individuals defend aggressively the 

core area around their burrow (Elliott 1978). A lirnited number of captures can thus provide a 

good estimation of the centre of the home range. Eastern chipmunks have a promiscuous mating 

system and on our study site females produce litters of two to five juveniles (Bergeron et al. 

2011b). Only females take care of the offspring in their burrow, and males do not show any 
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paternal behaviour (Elliott 1978). 

2.3.2 Study site and sampling 

We used a 25 ha (500 X 500 m) site located in the Ruiter Valley Land Trust in southern 

Québec, Canada (45°05'N; 72°25'W). Every year individuals were live-trapped on a 250 rn­

radius circle using 228 Longworth traps placed at 40 rn intervals (Longworth Scientific 

Instruments Ltd, UK). Each chipmunk was uniquely marked with ear tags (National Band 

and Tag Co., New York, KY) and a PIT tag (Eidap Inc., Alberta, Canada). We sampled tissue 

from the outer rim of the ear (2 mm 2
) for genetic analyses. Tissue samples ~ere preserved in 

95% ethanol until DNA extractions. At each capture .chipmunks were weighed, sexed and 

their reproductive status assessed. Untagged individual weighting less than 70g and showing 

no signs of reproduction (i.e. absence of a dark scrotum or of developed mammae) were 

considered as juveniles. Chipmunks were fitted with a radio-transmitter (model PD-2C, 

Holohil Systems Ltd ., Ontario) and we located their burrows at night using telemetry. 

We set up traps in front of the burrow entrance of each reproductively active female (i .e. 

hypertrophied vulva and/or devéloped mammae) around the estimated period of emergence 

of juveniles. We trapped once every two days until no new juvenile was caught for a period 

of one week. Any juvenile captured at the entrance of a female burrow was ass igned to that 

female and to this burrow location. We confirmed mother-offspring relationships by genetic 

exClusion (for details see Bergeron et al. 2011b), using the software CERVUS 3.0.3 

(Kalinowski et al. 2007). When genetic data were not available, we used behavioural 

observations to assign juveniles to a female and to a burrow (i.e. by directly observing a 

juvenile using a given burrow entrance or by trapping a juvenile in the same trap and at the 

same time of a reproductive female). Chipmunks with a known mother or natal burrow were 

considered as residents, and untagged chipmunks captured as adults for the first time on the 

grid and with an unknown mother were considered as immigrants. 



22 

· 2.3 .3 Microsatellites analyses 

DNA extraction was performed as detailed in Chambers & Garant (2010). Individuals were 

genotyped using 11 microsatellite loci designed and used previously for eastern chipmunks 

(see Bergeron et al. 2011b, Chambers & Garant 2010 and Supporting information 

(Appendice A) Table A.l for details). 

2.3.4 Seeds sampling 

We measured beech seeds production using plastic buckets (0.06m2
), placed under 30 

American beeches having a circumference at breast height > 10cm evenly distributed on the 

grid. We collected all the seeds in the buckets but considered only the fresh weight of viable 

seeds . We calculated the biomass of seeds per m2 of buckets as an index of seed production 

and as an indicator of a mast (as in Munro et al. 2008; Landry-Cuerrier et al. 2008, Bergeron 

et al. 2011a) . 

2.3.5 Estimation of population size 

We estimated population size at t + 1 as the product of population size at season t and the 

survival rates (ct>) of adults and juveniles, plus the number of immigrants and new juveniles 

caught at t+ 1 (see Bergeron et al. 2011a for more details on the estimation procedure of 

population size). Briefly, survival rates (ct>) were estimated from capture-recapture histories 

with the program MARK 6.0 (White & Burnham 1999). Capture histories were constructed 

based on the annual active period divided in two periods of tree months, each representing a 

period with potential juvenile emergence: late April-May to the end of July and August 1'1 to 

the end of October when all the chipmunks retreated in their burrow for winter. We used 

Cormack-Jolly-Seber models to estimate <P for a total of 11 periods between spring 2005 and 

spring 2010 (see Bergeron et al. 2011a), and used the trapping records from spring 2005 as 
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the baseline population size. 

2.3.5 Statistical analyses 

We quantified juvenile dispersal distapce as the Euclidian distance between the natal burrow 

and the first burrow occupied by an individual for more than one week. We defined as 

'settlement burrow' the burrow occupied during summer or fall (after July) for juveniles born 

in spring, and in the spring following their first winter (May or June) for juveniles born in 

autumn. Dispersal distances did not follow a normal distribution and thus were rank 

transformed. We theo performed a multiple regression analysis with dispersal distance as a 

response variable and sex, dispersal season, the occurrence of a mast during dispersal (spring, 

mast auturnn or non-mast autumn) and population size during dispersal season (including ali 

adults and juveniles) as explanatory variables. We used a backward selection procedure in the 

software R 2.12.0 (R development core team, 2011), sequentially removing the !east 

significant term from the mode! based on its P-value (a= 0.05). 

All adults caught on the study site in the spring of each year (April to end of June) were 

included in the genetic structure analyses. Both juveniles born in spring and in auturnn were 

considered in the analysis of the genetic structure of the following spring. We tested for 

significant departures from Hardy-Weinberg equilibrium (HWE) and for linkage 

disequilibrium using GENEPOP 4.0 (Rousset 2008) (exact test: 1000 dememorizations, 100 

batches and 1000 iterations per batch). We adjusted p-values using sequential Bonferroni 

correction. 

We estimated genetic relatedness among individuals using Wang's estimator of relatedness 

(rxy) (Wang 2002) implemented in SPAGEDI 1.2 (Hardy & Vekemans 2002). We computed a 

pair-wise geographie distance matrix. for every pair of individuals and for every year using 

GENALEX V.6 (Peakall & Smouse 2006). We computed a minimum convex polygon 

(MCP) using the adehabitat package for R (Calenge 2006) to estimate the home range of 

------ ----
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each individual based on 95% of the captures (rrùnimum 5 captures per individual per year; 

mean: 21 and maximum: 175). We then calculated the Euclidian distance among individuals 

as being the distance between the centre of their home range (or using the burrow location if 

the home range was not available). 

We assessed the extent of the spatial genetic structure for each sex and for each year using a 

spatial autocorrelation analysis implemented in GENALEX V.6 (Peakall & Smouse 2006). 

GENALEX estimates the maximum extent of the detectable non-random genetic structure 

from a pair-wise squared genetic distance and geographical matrices by calculating an 

autocorrelation coefficient (r) for categories of distance increasing in size. We tested for 

statistical significance using 10 000 random shuffling of individuals among geographie 

locations . These permutations determine the probability of obtaining an autocorrelation 

coefficient greater than or equal to the observed r, as expected under limited dispersal 

(Peakall & Smouse 2006). When this probability is Jess than 0.05, the hypothesis of positive 

spatial genetic structure is inferred. The maximum extent of positive spatial genetic structure 

is reached when the autocorrelation coefficient is no longer significant. We examined the 

data for distances classes ranging from 25m to 100m; we present the result for the SOm 

distance class because it provides the greatest resolution with a sufficient sample size. We 

will refer to the extent of detectable spatial genetic structure to indicate the maximum 

distance class at which the autocorrelation coefficient was significant. 

We performed a partial Mante! test (Mante] 1967) with FSTAT (Goudet et al. 2002) to 

establish the relationship between the pair-wise genetic distance (defined as 1-rxy) and a log 

transformed pair-wise geographie distance matrix for ail adults trapped during the study 

period. Sorne dyads were composed of chipmunks that were present on the study site during 

different years. We took this into account by generating an additional matrix with 1 standing 

for pairs of individuals that were present during different years and 0 for pairs of individuals 

that were present together during the same year. We also computed a partial Mante! tests 

separately for residents, imrrùgrants and resident-immigrants dyads. To test if the relationship 

between the geographie and the genetic distance found with the Mantel test changed between 
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years, we computed a Mantel test for every year using the vegan package for R (Oksanen et 

al. 2011; R development core t.eam 2.12.0, 2011). We tested for statistical significance with 

10 0000 random permutations of the data. These analyses were done for males and females 

separately. 

We also used a Wilcoxon test to assess the difference in relatedness between years and, 

between female dyads, male dyads and male-female dyads within each year. We also 

compared pair-wiserelatedness 'between immigrant dyads and resident dyads for females and 

males respectively and also compared the pair-wise relatedness of immigrants-resident dyads 

for both sexes. For sorne logistic reasons, our capture success for juveniles at the beginning 

of the study period (i.e. prior to 2008) was much lower and thus we only considered 

individuals captured for the first time after 2007 in the immigrant-resident analysis. 

2.4 Results 

2.4.1 Mast events, population size and dispersal season in our study site 

. Changes in beech seed production, population size, reproductive season and juvenile 

dispersal season during the study period (2005-2010) are presented in Figure 2.1. Juveniles 

dispersed in the autumns of 2006, 2008 and 2009 following a summer reproduction : Juveniles 

also dispersed in the late spring of 2005, 2007 and 2009 following reproduction in early 

spring. There was no reproduction in spring 2010. A beech mast occurred in the autumn 2006 

and 2008. Very few seeds were produced in 2009 so we did not consider 2009 as a beech 

mast year (Figure 2.1). Population size varied from 76 individuals in the spring of 2006 to a 

maximum of 260 individuals in the autumn of 2008 and population size increased during 

eàch reproductive event (Figure 2.1). 
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2.4.2 Dispersal distances 

Multiple regression analysis revealed that juveniles dispersing in the spring and during a mast 

autumn went further than juveniles dispersing during a non-mast autumn (Table 2.1, Figure 

2.1b) and that males dispersed significantly further away than females (Table 2.1, Figure 

2.1a). Population size and all the interaction terms were excluded from the final mode!, which 

explained 15.9% of the variance in the data. 

Table 2.1 Final madel explaining dispersal distances of juvenile in the mounts Sutton eastern 
chipmunk population (Québec, Canada) (n=SO) 

Coefficient 1 s.e. t-value P 

Intercept 9.11 11 6c25 1.46 0.15 

Sex:Males' 11.22 0 4.63 2.42 0.019 

Dispersal season: mast 13.41 0 6.63 2.02 0.048 
autunmb 
Dispersal season: Spring' 18.03 0 6. 71 2.68 0.009 

'Fema le is the reference; "dispe rsal season: non- mast autumn is the reference; the adjusted R-square is 15.9 % 
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Figure 2.2 Dispersal distances of juvenile eastern chipmunk of the mounts Sutton population, (Québec, 
Canada), percentage of juveniles in each category of dispersal distances for a) females and males (n = 
39 and 11 respectively) and b) juveniles dispersing in a mast autumn, a non-mast autumn and in spring 
(n = 25, 5 and 20 respectively). 

2.4.3. Population genetic structure 

No loci showed consistent departure from HWE and linkage disequilibria across years (after 

Bonferroni correction). All the loci were thus kept in the analyses. 

Fine-scale spatial genetic autocorrelation analyses performed within each year revealed a 

significant positive autocorrelation for adult females in every year (Table 2.2; see Supporting 

information (Appendice A) Table A.2 for the autocorrelation coefficient and p-values at every 

distance .intervals). Female maximum extent of the detecta ble spatial genetic structure was 

larger in spring following a juvenile dispersal period in autumn and when the population size 

was at its highest in spring (spring 2007 (200m) and 2009 (250m) (Figure 2.1, Table 2.2). In 

contrast, we did not find any consistent significant autocorrelation pattern for adult males 

(see Supporting information (Appendice A) Table ii b). 
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Table 2.2 Maximum extent of positive spatial genetic structure (i.e . Max females) and p-values (P) 
detected for adult females ca ught in the spring in the mounts Sutton eastern chipmunk population 

(Québec, Canada) 

Year Max females (rn) p 

2005 50 0.015 

2006 
50 0 .009 

2007 200 0.042 

2008 100 0.010 

2009 250 0.026 

2010 100 0.043 

Mante! tests with all years combined revea led that females located close t0 each other tended 

to be more closely related than females located further apart as shawn by the positive 

relationship between their genetic and geographie distances (r = 0.092, n = 12344 dyads, P < 

0.001). We found the same positive relationship between genetic and geographie distances 

when considering dyads of resident, of immigrant or of immigrant-resident females (resident 

dya ds: r = 0.240, n = 296, P = <0.001; immigrant dyads: r = 0.096, n = 809, P = 0.005; 

immigrant-resident dyads : r = 0.340, n = 1035, P = < 0.001). Females captured during the 

same year were not significantly more related than females captured during two different 

years (r = -0.012, P = 0.17) even when we considered immigrants and residents separately 

(residents: r = 0.006, P = 0.91; immigrants: r = -0.059, P = 0.089; immigrant-resident dyads: 

r = -0.013, P = 0.23). 

In contrast, males located farther from each other were significantly more closely related than 

males located doser to each other in every year (r = -0.032, n = 14815, P = <0.001). This result 

was mainly driven by resident males (r = -0.192, n = 184, P = 0.010) as we found no significant 

relationship between genetic and geographie distance for immigrant males and for immigrant­

resident dyads (immigrant dyads: r = 0.022, n = 1581, P = 0.39; immigrant-resident dyads: r = 

0.006, n = 1140, P = 0.85). Males trapped during the same year were more related than males 

trapped during two different years (r = 0.027, P = 0.002) but this relationship was not sigrlificant 
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when we analysed separately resident, immigrant or immigrant-resident dyads (residents: r = 
0.017, P = 0.93, immigrants: r = 0.025, P = 0.30; immigrants-residents: r = 0.005, P = 0.86). 

Result from the simple Mante! tests calculated for each year separately also revealed a 

positive relationship between genetic and geographie distance in ail years for females and this 

relationship was significant in four of the six study years (Table 2.3) . For males, the 

relationship between geographie and genetic distance was negative in five out of six years 

(significant in 2009, see Table 2.3). 



30 

Table 2.3 Relationship between genetic (1-rxy) and geographie (euclidian) distances for each year 
and for female and male eastern chipmunks of the mounts Sutton population (Québec, Canada); n = 

sample size, r =correla tion coefficient from Mante! tests, P : pcvalues after 10 000 permutations; 
significan t ~-va lues are in bold 

Se x Year n r p 

Females 

2005 9 0.179 0.23 

2006 22 0.107 0.096 

2007 49 0.157 < 0.001 

2008 42 0.097 0.016 

2009 43 0.168 < 0.001 

2010 42 0. 137 0.002 

Males 

2005 8 -0.036 0.56 

2006 11 0.151 0.13 

2007 21 -0.094 0.89 

2008 39 -0.059 0.87 

2009 37 -0.103 0.008 

2010 57 -0.007 0.57 

Mean pair-wise relatedness comparisons for each dyad type per year revealed that female 

dyads were more related to each other than male dyads in three of the six study years (2005, 

2006 and 2008 and marginally non-significantly in 2007, Table 2.4). Female dyads also had a 

significantly higher rxy than heterosexual dyads in 2005 and 2006 (Table 2.4). Male dyads had 

a significantly smaller rxy than heterosexual dyads in 2008 (Table 2.4). Ali the other dyad 

types were similarly related to each other. We did not find any s ignificant difference between 

the pair-wise relatedness of immigrants and res idents of both sexes (males: immigrants: mean 

rxy = 0.007 ± 0.195, n = 736; residents: rxy = 0.003 ± 0.184, n = 49; P = 0.84; females: 

immigrants: mean rxy = 0.004 ± 0.201, n = 318; residents: rxy = -0.004 ± 0.195, n = 109; P= 

O. 76). We also fou nd no significant difference between rxy of immigrant females and males (P 

= O. 76), between resident females and ma les (P = 0.80), and between immigrants-resident 
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dyads in both females and males (male mean rxy = -0.011 ± 0.196, n = 410; female mean rxy = 

-0.025 ± 0.186, n = 406; P = 0.33). Mean pair-wise relatedness comparisons revealed that 

adults present in 2010 were more related to each other (i.e. higher mean rxy) than adults 

present in ali the other years except 2005 (Table 2.4; 2005: Wilcoxon test P = 0.42; 2006: P = 

0.017; 2007: P < 0.001; 2008: P < 0.001; 2009: P = 0.026) and adults present in 2009 were 

more related than adults present in 2008 (Table 2.4; p = 0.026) (after Benjamini and 

Yekutieli correction (2001)). 

Table 2.4 Mean annual pair-wise relatedness coefficients among adults in the mounts Sutton eastern 
chipmunk population (Québec, Canada) and comparison between dyad types; n = sample size, FF = 
female dyads, MM= males dyads and MF = male-female dyads; significant p-va lues are in bold 

Year Overall fxy FF fxy MMr, MF rxy FFvs MM FF VS MF MM vs MF 
n ±s.e. ±s.e. ± s.e. ±s.e. p-value p-value p-value 

2005 50 
-0 .01 7 ± O.ülS ± -0.029 ± -0.024 ± 

0.006 0.004 0.82 
0.190 0.195 0. 183 0.189 

2006 69 
-0 .022 ± -0.003 ± -0.037 ± -0 .023 ± 

0.002 0.027 0.18 
0.194 0.195 0.192 0.194 

2007 138 
-0.023 ± -0.016 ± -0.026 ± -0.024 ± 

0.053 0.13 0.46 
0.199 0.204 0.196 0.197 

2008 106 
-0 .026 ± -0.019 ± -0.039 ± -0 .023 ± 

0.009 0.69 0.007 
0.190 0.191 0.189 0.190 

2009 158 
-0 .017± -0 .013 ± -0.019 ± -0.017 ± 

0.37 0.63 0. 57 
0.193 0. 197 0.190 0.194 

2010 124 
-0.009 ± -0 .014 ± -0.005 ± -0.009 ± 

O.ü78 0.18 0.50 
0 .193 0.203 0.189 0.192 

2.5 Discussion 

Our results indicate that season and seed availability affected juvenile dispersal in eastern 

chipmunks. Overall the genetic structure of the population was relatively stable from year to 

year. However, we found that the fine scale spatial genetic structure of females was labile. 

We also found between-sex differences in the spatial genetic structure as well as differences 

in juvehile dispersal distances that are both consistent with male-biased dispersal behaviour. 

Beech seed production has been shawn to affect multiple aspects of the chipmunks life 

his tory and population dynamics (Landry-Cuerrier et al. 2008; Bergeron et al. 2011a) . 
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Chipmunks both anticipate the mast by reproducing in the summer of a mast year and the 

spring following a mast. As a result, beech seed production, and chipmunk reproduction, 

population density, and burrow availability are all interrelated, and it is not always possible to 

separate their effects on dispersal and genetic structure. However, the overall the factor that 

drives the system and its components (dispersal and structure) is seed production. ln case of 

dispersal, we could clearly distinguish th~ direct effects of seed production on dispersal and 

structure and its indirect effects acting through population density. When it ~as not possible, 

we discuss~d the overall (i.e. bath direct and indirect) effects of seed production without 

providing more details. Below we briefly discuss the effects of sex on dispersal before 

providing a full interpretation of the effects of environmenta l conditions on dispersa l and the 

genetic structure of the population. 

2.5.1 Sex-biased dispersal 

Recent studies suggested that sex-biased dispersal can generate differences between the sexes 

in the fine-scale spatial genetic structure even in the absence of distinct natal philopatry of 

one sex (Cutrera et al. 2005, McEachern et al. 2007). Dispersal behaviour of juvenile eastern 

chipmunks has been shown to be male-biased in previous studies using either telemetry or 

analyses of genetic structure at a larger scale (Loew 1999; Chambers & Garant 2010). Our 

results are also consistent with a male-biased dispersal behaviour: juvenile males dispersed 

further than females and a sex-bias was also detectable in the spatial genetic structure of the 

adult population. Recently, Bergeron et al. (20llb) found that female eastern chipmunks can 

bias the paternity of their offspring in favour of less related males . Such behaviour related to 

inbreeding avo idance shou ld lead to selection for male dispersa l (Lehmann & Perrin 2003). 

Furthermore, related resident adult males were located farther away from each other than 

unrelated males ~ which suggests that the avoidance of competition between related ma les 

rnight be an important factor selecting for male dispersal and that siblings rnight even 

disperse in opposite direction during natal dispersal. Female mammals disperse less because 

farniliarity with the natal area may facilitate the acquisition of resources and breeding sites 

(Greenwood 1980, Lawson Handley & Perrin 2007). In addition, spatial clustering of kin 

1 
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may reduce the frequency of agonistic interactions and favour space sharing among relatives 

(Lambin et al . 2001, Wolff & Sherman 2007). We found a significant spatial autocorrelation 

pattern between 0 and SOm for all the study years suggesting that female neighbours are 

relatives. Given that the diameter of a female home range is around 40m, this spatial 

a utocorrelation occurs at a scale at which most of the social interactions must take place. It is 

thus possible that female relatives tolerate each other and share home ra nges li ke it has been 

found of other solitary species (Lambin et al. 2001, Wolff & Sherman 2007, Maher 2009). 

The obligate dispersal in eastern chipmunks and the competition for space rrti ght prevent a 

pronounced spatial clustering of female kin in this species. 

2.5 .2 Environmental conditions, dispersal behaviour, and spatial genetic structure 

Recently, Bergeron et al. (2011a) have shawn that eastern chipmunks can anticipate a mast 

and reproduce so that juveniles emerge when beech seeds are available in autumn. They also 

show a spring reproduction following a mast in the autumn (Figure 2.1). Furthermore, the 

mast affects activity budget and above ground activity during the summer. Our study 

suggests that the occurrence of a mast could have an impact on the dispersal distance of 

juveniles. Juveniles dispersing during a non-mast autumn dispersed at shorter distances than 

juveniles dispersing during a mast autumn or during spring despite the absence of beech seed 

production in spring. In contrast, population density was not kept in the madel and therefore 

may not play an important role on dispersal distance. These results suggest that bath dispersal 

season and beech seed production could affect directly the dispersal distance of juveniles, but 

that indirect effects of seed production on dispersal through an increase in population density 

and a decrease in burrow availability the year of a mast might be negligible. Nevertheles s, 

these results should be taken with caution given the small sample size (i .e. 5 juveniles) in the 

non-mast au tumn related to the rare summer reproductive events occurring during non-mast 

years. 

Our study des ign prevents us from sampling juv~niles that dispersed outside of the study grid. 

The probability of catching a juvenile on the grid after it has dispersed decreases with its 
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dispersal distance and the location of its natal burrow relative to the centre of the grid. Our 

design, thus, probably limited sample size and may underestimate dispersal distances, by 

missing far-dispersing individuals. However, the majority of the dispersal distances that we 

report were less than 200 rn for a grid of 500 rn, and none of the juveniles was found 

dispersing at more than 350 rn, suggesting that only a minority of individuals dispersed 

outside of the limits of our study area (Figure 2.2). Missing individuals that dispersed outside 

the grid probably reduced our ability to detect differences among sexes or environmental 

conditions. Despite this potential limitation, we were able to find strong differences in 

dispersal between males and females and between seasons, which indicates that these effects 

must have been strong to be detectable. 

We found that the maximum extent of the spatial genetic structure of adult females was larger 

during period of high densi ty and follow ing a juvenile emergence in autu mn (spring 2007 and 

2009). Despite the absence of obvious direct effects of density on dispersal distance, we may 

still expect sorne effects of density on the genetic structure of the population. During the mast 

autumns of 2006 and 2008, the large number of juveniles that were produced had to find a 

burrow. These juveniles were considered in the spatial genetic structure analyses of the 

following spring. In social rodent species, juveniles stay in the natal site and create kin 

clusters (Dobson 2007) . On the contrary, dispersal is obligate in the eastern chipmunk, 

.owning a burrow is necessary for survival (Elliott 1978), and there is a limited number of 

vacant burrows on the site. Increased population density may thus force juveniles to disperse 

outside of the kin clusters in a divergent way, which in turn may increase the extent of 

· genetic structure of adults the following spring (2007 and 2009) . ln parallel, a high number of 

new immigrants settling on the grid during the autumn 2006 and 2008 and located the 

following spring (see Bergeron et al. 2011b), probably diluted the link between relatedness 

and geographie distance and increased the extent of genetic structure. 

Only a handful of studies have assessed the effects of spatial or temporal variation in 

environmental conditions on population genetic structure in solitary species (Cutrera et al. 

2005, McEachern et al. 2007, Busch et al. 2009, Pilot et al. 2010). For example, Busch et al. 
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(2009) studied the spatial genetic structure of a population of banner-tailed kangaroo rat 

(Dipodomys spectabi/is) in Arizona over 14 years with variable population slze. They found 

that the spatial genetic structure of the population was labile and that the maximum extent of 

spatial genetic structure was positively correlated with population size. Cutrera et al. (2005) 

compared two populations of the Talar tucos-tucos (Ctenomys ta/arum), a solitary rodent of 

Argentina, and found that kin structure, and particularly female kinship and spatial geneti c 

structure was more pronounced in the population with a high-density even in the absence of 

marked philopatry. These studies suggest that relatedness structure of solitary species can be 

relatively labile and depends on environmental conditions, particularly for females. In our 

study, the relationship between the genetic and geographie distances was almos t always 

significant and positive for adult females, suggesting strong and stable spatial aggregation of 

related females. It was almost always random for males, and thus was not sensitive to 

changes in environmental conditions. However, the extent of female genetic structure 

changed from year to year depending on environmental conditions, revealing variation in the 

leve! of kin aggregation. 

2.5.3 Causes of observed dispersal behaviour 

Juvenile chipmunks have to find a vacant burrow and store seeds for winter survival saon 

after emergence. Masting events are synchronized at the regional scale (Kelly & Sork 2q02). 

Consequently, a dispersing juvenile would find approximately the same seeds availability 

even if travelling over rather long distances. In addition, contrary to spring dispersing 

juveniles, juveniles dispersing in autumn have only a couple of months to find a suitable 

burrow and to store seeds before winter. During dispersal, an individual may encounter 

severa! settlement opportunities. However, it is assumed that individuals have a refractory 

period where they reject potential habitats even high quality ones, and that this period 

depends on the availability of either habitat resources or research time (Stamps and Davis 

2006; Stamps et al. 2007). Therefore, a juvenile that disperses in autumn and during low seed 

avai lability conditions may benefit from choosing the first suitable vacant burrow it 

encounters rather than from taking the risk of dispersing further. A juvenile dispersing in 
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autumn but during a mast event will still have a limited time to find an appropriate burrow, 

but the availability of seeds arguably decreases the costs of dispersal. 

2.6 Conclusion 

Our study shows that the spatial distribution of relatives in a population of solitary species 

can be labile and depends on environmental conditions. ln particular the effects of American 

beech seed production on the genetic structure appear to be essentially indirect, through its 

effects on chipmunks reproduction and the recruitment of juveniles. Following mast autumn, 

the high production of juveniles led to an increase in the density of the population. This 

increased density may force an eccentric dispersion of residents juveniles, which in addition 

to · the dilution effects created by the arriva! of new juvenile immigrants on the study site 

increases the extent of the genetic structure. Beech seed production may also have a more 

direct effect on the genetic structure by affecting juvenile dispersal clistances. This effects are 

mostly observable in females which social structure and dispersal behaviour may have 

evolved mainly under the pressure of resources distribution. In the males, dispersal seem to 

depend more strongly on evolutionary causes such as competition avoidance with kin or 

inbreeding avoidance, and their longer dispersal distance and genetic structure did not appear 

to be sensitive to fluctuation in resources production. Our study, therefore, highlights the 

importance of analysing the interrelations between ecological conditions and evolutionary 

causes to get a complete picture of the evolution of dispersal and its consequences on the 

genetic structure of a population. 
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CHAPITRE III. CONCLUSION 

Nous avons évalué la flexibilité du comportement de dispersion et la répartition spatiale des 

individus apparentés chez une espèce solitaire. À cet effet, nous avons étudié l' impact d'une 

forte variation des conditions environnementales sur les distances de dispersion des jeunes et 

la structure génétique spatiale d'une population de tamia rayé (Tamias striatus). Nous avons 

également déterminé si l'effet de ces conditions était le même pour les mâles et les femelles 

de la population. 

3.1 Flexibilité du comportement de dispersion et de la structure génétique spatiale 

Notre étude révèle que, tout comme chez les mammifères sociaux, la distribution des 

individus apparentés et le patron de dispersion des jeunes chez une espèce solitaire peuvent 

être flexibles. 

Notre étude montre que le comportement de dispersion des jeunes tamias rayés dépend de 

leur sexe, les mâles dispersant à des distances moyennes plus grandes que les femelles, et 

qu'il est sensible aux variations des conditions environnementales, particulièrement à la 

disponibilité des ressources alimentaires et au temps disponible pour trouver un terrier 

adéquat avant l'hiver. En effet, les jeunes tamias rayés ont parcouru une plus grande distance 

lorsqu ' il y· avait une grande production de graines lors de leur dispersion. Les jeunes ont 

également parcouru une plus grande distance lorsqu'ils avaient plus de temps disponible pour 

trouver un terrier adéquat avant l'hiver, c'est-à-dire lorsque leur dispersion ava:it lieu au 

printemps. Par contre, la taille de la population n'a eu aucun effet sur les distances de 

dispersion des jeunes. Nous montrons également que la structure génétique spatial e des 

femelles varie selon les années, alors que la structure génétique spatiale des mâles ne varie 

pas. L'étendue de la structure génétique spatiale des femelles adultes était plus grande suivant 
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une émergence et une dispersion des jeunes à l'automne~ suggérant que l'impact de la saison 

sur les patrons de dispersion des jeu nes se reflète dans la distribution des adultes apparentés 

l'année suivante. 

Des études menées chez les rongeurs sociaux ont montré que leur structure sociale peut être 

flexible et dépendre des conditions environnementales (Wolff et Shermann 2007) . D'ailleurs, 

certaines espèces de rongeurs peuvent vivre de façon solitaire ou sociale selon l'abondance 

des ressources (Randall 2005; Schradin et Pillay 2005; Schradin, Konig et Pillay 2010). 

Quelques études seulement ont analysé l'impact d'une variation temporelle ou spatiale des 

conditions environnementales sur la structure génétique spatiale d'espèces solitaires (Cutrera, 

Lacey et Busch 2005; McEachern, Eadie et Van Vuren 2007; Busch, Waser et DeWoody 

2009; Pilot et al. 2010), mais il paraît de plus en plus claire que la distribution des individus 

apparentés chez les espèces solitaires est flexible tout comme chez les espèces plus sociales. 

3.2 Les causes évolutives de la dispersion 

La flexibilité du comportement de dispersion des jeunes tamias rayés et de la structure 

génétique spatiale des femelles peut être attribuable à la variation de l'importance relative des 

coûts et des bénéfices de la dispersion selon les conditions environnementales et selon le sexe 

(Salomon 2003). Par exemple, lorsque les ressources sont limitées, les coûts énergétiques de 

la dispersion peuvent être plus importants que les coûts de la compétition entre individus 

apparentés, surtout si un partage de l'espace et une certaine tolérance entre parents est 

possible. Les différences de comportement de dispersion entre les mâles et les femelles 

peuvent être attribuées aux déterminants du succès reproducteurs de chaque sexe (Greenwood 

1980). Lors de notre étude, la structure génétique spatiale des mâles n'a pas varié en fonction 

des conditions environnementales. Ainsi, il semble que le comportement des mâles serait 

davantage contraint par des pressions évolutives indépendantes des conditions 

environnementales étudiées, comme l'évitement de la consanguinité ou de la compétition 

entre les pairs pour les partenaires sexuels (Greenwood 1980; More et Ali 1984; Lawson 

Handley et Perrin 2007). En revanche, le comportement de dispersion des femelles serait plus 



flexible parce qu'il aurait évolué en réponse à l'accès à des ressources dont l'abondance varie 

temporellement (Greenwood 1980; Lawson Handley et Perrin 2007; Lambin, Aars et 

Piertney 2001). De plus, les bénéfices d'une familiarité et d'une tolérance entre voisines 

apparentées pourraient être plus importants que les coûts associés à leur compétition 

(Greenwood 1980 ; Bowler et Benton 2005). Nous avons trouvé une structure génétique 

spatiale significative à l' échelle du domaine vital d'un individu (SOm) et donc à l'échelle à 

laquelle la plupart des interactions sociales devraient avoir lieu. Le tamia rayé même s' il est 

considéré comme solitaire, a de nombreuses interactions sociales. Par exemple, les domaines 

vitaux de voisins se chevauchent et ils s'engagent régulièrement dans des interactions 

agonis tiques pour défendre leur territoire (Elliott 1978). Il es t donc possible qu'il y ait une 

diminution des interactions agonistiques entre femelles apparentées ou un certain partage de 

1' espace qui pourrait être particulièrement avantageux lorsque les ressources sont peu 

abondantes. 

3.3 Impact de la production de graines sur la population 

Les épisodes de production de graines par les arbres à paisson ont un impact important sur 

plusieurs facettes de l'écologie des animaux (Bou tin et al. 2006; Koenig et Knops 2005). Par 

exemple, Hannon et ses collaborateurs (1987) ont montré que, chez des populations de Pic 

glandivore (Melanerpes formicivorus) de la côte ouest des États-Unis, les cycles de 

production de glands influencent la dynamique de ces populations, particulièrement le 

recrutement des juvéniles. De plus, Jones et ses collaborateurs (1998) ont montré que les 

cycles de production de graines des chênes dans le nord des États-Unis peuvent avoir des 

impacts sur toute une communauté et sur la sant~ humaine. Lorsqu'il y a une production de 

gla nds par les chênes, il y a une augmentation de la densité des populations de souris 

Peromyscus leucopus et du cerf Odocoi/eus virginianus. Ces derniers sont les hôtes de la 

tique Ixodes scapularis porteur de la bactérie Borrelia burgdorferi responsable de la maladie 

de Lyme chez les humains. Ainsi, la production de glands a un impact sur les risques de 

contracter la maladie de Lyme par les humains via son effet sur les populations de souris et 

de cerfs. De plus, la souris se nourrit de glands et des pupes du papillon Lymantria dispar. 

Lorsqu'il est abondant, ce papillon peut avoir d'importantes conséquences pour les forêts de 
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chênes: ils défolient les arbres et nuisent à leur croissance. Lorsqu'il qu'il y a une production 

de glands, la grande densité de souris et leur prédation sur les pupes du papillon garde 

l'abondance des populations de papillons basse. Alors que l'abondance des populations de 

papillons augmente lorsqu'il y a peu de souris, résultat de la faible production de glands par 

les chênes. 

Dans le cas du tamia rayé, les cycles de production de graines par les hêtres ont une influence 

sur les patrons de torpeur des individus (Landry-Cuerrier et al . 2008) et sur leurs patrons 

d'activité (Munro, Thomas et Humphries 2008) . De plus, Bergeron et al. (2011a), ont montré 

que les épisodes de production de graines ont également une influence sur les épisodes de 

reproduction. Notre étude montre que la production de graines a également un impact sur les 

patrons de dispersion des jeunes et sur l'ensemble de la structure génétique spatiale de la 

population par son effet sur les épisodes de reproduction. Ainsi, en synchronisant les épisodes 

de reproduction des tamias, les cycles de production des graines pourraient affecter toute la 

structure sociale de la population. De plus, il est possible que la production de graines ait un 

impact à une échelle bien plus grande, en influençant le taux d'immigration et d' émigration 

dans les populations et les flux géniques. 

Troisièmement, notre étude souligne l'importance des graines des arbres décidues et 

particulièrement des graines d'hêtres à grande feuille pour le tamia rayé. La synchronisation 

des épisodes de reproduction de ces arbres (paisson) a un impact important sur toute la 

dynamique de la population et sa structure génétique spatiale. Ainsi, les facteurs qui ont un 

impact sur les cycles de production de graines ont également un impact sur la dynamique de 

la population. Les causes de la synchronisation des épisodes de production des graines de ces 

arbres so~t toujours débattues, mais il semble que la température, et particulièrement la 

quantité de précipitations soit un des facteurs déterminant de la production de graines (Kelly 

et Sork 2002). De plus, certains modèles portant sur les effets des changements climatiques 

sur la composition des forêts prédisent qu ' il y aura une diminution de l'abondance des hêtres 

en Amérique du Nord (McKenney-Easterling et al. 2000). Ainsi, il est possible que les 

changements climatiques et surtout les changements de régime de précipitations, aient un 
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impact sur la dynamique des populations de tamias rayés. Par contre, à court terme, c'est la 

maladie corticale du hêtre qui menace les populations d'hêtres à grande feuille en Amérique 

du Nord (Morin et a l. 2007). Pourtant, malgré la progression rapide de la maladie, il ne 

semble pas y avoir de liens directs entre les invasions de la maladie et la densité de hêtres 

dans une région. De plus, la maladie semble envahir les forêts qui sont dominées par le hêtre 

et dans une moindre mesure les forêts où le hêtre est présent en plus petite quantité (Morin et 

al. 2007). Donc, il est possible que dans les forêts envahi par maladie, le tamia rayé aient 

d'autres sources de nourriture comme des graines d'érables rouges, d'érables à sucre ou des 

glands de chênes. Ainsi, une diminution de la quantité d'hêtre à grande feuille pourrait avoir 

un impact sur la dynamique des populations de tamias rayés au sud du Québec, mais la 

présence du tamia rayé dans les forêts québécoises ne semble pas menacée à court ou à 

moyen terme. 

3.4 Limitations de l'étude 

D'abord, tel que mentionné dans le chapitre principal de ce mémoire, la taille de notre site 

d'étude nous a empêché de capturer les jeunes qui se sont établis à l'extérieur du site. Pour 

évaluer les distances de dispersion de tous les jeunes produits nous aurions pu suivre leurs 

déplacements par télémétrie jusqu'à leur site établissement ou agrandir le site d'étude. 

Toutefois, une telle procédure impose une charge en terme de matériels, de temps et de main­

d'Œuvre que nous ne pouvions pas assumer. Néanmoins, la distance de dispersion maximale 

que nous avons observée est de moins de 350m pour un site de 500m par 500m. Par 

conséquent, il y a sans doute eu peu de jeunes qui se sont dispersé hors de l'aire d'étude. De 

plus, si l'effet des conditions environnementales sur les distances de dispersion sont 

détectables à une échelle aussi fine que celle de notre site d'étude, il est fort probable que 

nous aurions détecté un effet encore plus grand en élargissant notre site d' étude ou en suivant 

les jeunes par télémétrie. 

Ensuite, nous disposons d'une petite taille d'échantillon pour les jeunes qui se sont dispersés 

lors d' un automne avec peu de graines (2009). Peu de jeunes ont survécu à l' hiver 2010, 

probablement dû à la faible production de graines (Bergeron et al . 2011a) . Nous n'avons 



46 

donc pas recapturé beaucoup de jeunes au printemps 2010. Afin de confirmer l'impact de la 

prodution de graines et de la saison sur les distances de dispersion, nous devrions faire le 

même type d'analyse avec au minimum une autre année semblable à 2009. Toutefois, les 

conditions rencontrées en 2009 (dispersion d'automne et peu de graines) sont rares puisque le 

tamia synchronise habituellement ses épisodes de reproduction avec la production de graines 

par les hêtres (Bergeron et al. 2011a). 

Les risques de prédation lors de la dis pers ion peuvent être importants, surtout lorsque les 

jeunes traversent des habitats non-familiers (Johnson et Gaines 1990). Il est donc poss ible 

que les individus qui parcourent de grandes distances lors de leur dispersion soient dava ntage 

victime de prédation que les individus qui parcourent de plus petites distances et qui restent 

proches de leur habitat de naissance. Ainsi, la prédation pourrait avoir un impact sur la 

structure génétique spatiale de la population. Malheureusement, nous ne disposions pas de 

données sur les prédateurs du tamia rayé sur notre site d'étude, nous n'avons donc pas pu 

vérifier cette hypothèse. 

De plus, l'écologie du tamia rayé et la dynamique de la population sont étroitement liés aux 

cycles de production des graines (Munro, Thomas et Humphries 2008, Landry-Cuerrier et al. 

2008, Bergeron et al. 201la, 2011b). Ainsi, la production de graines, la saison de dispersion 

des jeu nes, la taille de la population et la disponibilité des terriers sont tous intereliés et il 

n'est pas facile de séparer l'effet de chacun de ces facteurs. Cette difficulté n'est pas unique à 

notre étude. En effet, la plupart des études qui utilisent des populations sauvages font face à 

ce type de limitations. Souvent, seules les expériences en milieu contrôlé qui manipulent une 

seule variable à la fois peuvent isoler l'effet d'un facteur sur le comportement étudié. 

Néanmoins, nous avons été en mesure de distinguer certains patrons qui vont d'ailleurs dans 

le même sens de ce qui a été démontré en captivité chez d'autres espèces de rongeurs 

(Gundersen et Andreassen 1998; Le Galliard et al. 2006; Lucia et al. 2008; Hahne et al. 

2010). 



3.5 Directions futures 

Premièrement, notre étude suggère que les femelles apparentées sont voisines, alors que les 

mâles apparentés seraient plutôt situés loin les uns des autres . Nous avons attribué ces 

différences aux bénéfices de la proximité spatiales des femelles apparentées comme une 

certaine tolérance et un plus grand partage de l'espace entre parentes. Il pourrait être 

intéressant de vérifier sUes femelles apparentées partagent effectivement une plus grande 

partie de leur domaine vital que les femelles non apparentées. Pour ce faire, nous devrions 

mesurer le domaine vital des femelles et vérifier le niveau de chevauchement entre voisines 

apparentées. De plus, il pourrait intéressant de comparer le niveau de chevauchement de 

domaine vital des femelles selon les conditions environnementales. 
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Deuxièmement, notre étude montre qu'une variation temporelle de conditions 

environnementales influence la distribution des femelles apparentées . Nous pourrions 

maintenant évaluer l'impact d'une variation spatiale des conditions envi ronnementales sur la 

distribution des individus. En effet, bien que le site d'étude soit relativement homogène, il est 

possible que certaines zones soient de meilleure qualité que d'autres . Il pourrait donc être 

intéressant d'évaluer l'apparentemment des individus qui vivent dans ces zones. Nous 

pourrions également évaluer si nous trouvons les patrons observés dans d'autres populations 

avec des conditions environnementales différentes. Ce type d'analyse nous permettrait 

d'évaluer l'influence d'une variation spatiale de conditions environnementales à petite et à 

grande échelle sur les patrons de dispersion et la structure génétique spatiale d'une population 

sauvage. 

Troisièmement, notre étude suggère que les mâles et les femelles ne sont pas affectés de la 

même manière par les conditions environnementales. Outre le sexe, d'autres différences 

phénotypiques sont suceptibles d'influencer lè comportement de dispersion des jeunes 

(Clobert et al. 2009). Des études ont montré que le poids, le statut reproducteur, le statut 

hormonal, 1' expérience natal et la personnalité ont une influence sur le comportement de 

dispersion des individus (Woodroffe, McDonald et da Silva 1993; Nunes et a/.1997; Dufty et 

Beltroff 2001; Dingemanse et al. 2003; Davis et Stamps 2004; Duckworth et Badyaev 2007; . 



Benard et McCauley 2008). Nous pourrions vérifier si d'abord les résultats de ces études 

s'appliquent au tamia rayé, mais surtout si l'influence de ces taits sur le comportement de 

dispersion varie selon les conditions environnementales rencontrées. 
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APPENDICE A 

Informations supplémentaires au chapitre 1 

(Supporting information) 
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Table A.l . Number of allele (A), observed (Ho) and expected (He) heterozygosity and exclusion 
probability of the loci used in the genetic structure and parentage analysis of the mounts Sutton eastern 
chipmunks population (Québec, Canada) (CHIP were designed for chipmunks by Peters et al. 2007 
and EACH by Anderson et al. 2006) 

Locus A Ho He 
Exclusion 
probability* 

EACH 1 10 0.757 0.817 0.645 

EACH 3 5 0.554 0.563 0.267 

EACH4 12 0. 709 0.724 0.525 

EACH 6 8 0.439 0.496 0.278 

EACH8 7 0.336 0.373 0.191 

EACH 10 4 0.433 0.449 0.212 

EACH 11 18 0.802 0.846 0.697 

EACH 12 11 0.833 0.801 0.613 

CHIP 5 4 0.340 0.343 0.180 

CHIP 14 23 0.857 0.921 0.841 

CHIP 39 3 0.401 0.400 0.165 

Mean 9.545 0.587 0.612 0.999t 

*Ca lcu lated as 1- (nonexclusion probability) wh en the mother is known . 

tOverall combined exclusion probability. 
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