
A new exact algorithm for the multi-depot vehicle
routing problem under capacity and route length

constraints

Claudio Contardo

Département de management et technologie, ESG UQÀM
315 Ste-Catherine Est, Montréal (QC), Canada H2X 3X2

e-mail address: contardo.claudio@uqam.ca

This article presents an exact algorithm for the multi-depot vehicle routing problem
(MDVRP) under capacity and route length constraints. The MDVRP is formulated using a
vehicle-flow and a set-partitioning formulation, both of which are exploited at different stages
of the algorithm. The lower bound computed with the vehicle-flow formulation is used to
eliminate non-promising edges, thus reducing the complexity of the pricing subproblem used
to solve the set-partitioning formulation. Several classes of valid inequalities are added to
strengthen both formulations, including a new family of valid inequalities used to forbid
cycles of an arbitrary length. To validate our approach, we also consider the capacitated
vehicle routing problem (CVRP) as a particular case of the MDVRP, and conduct extensive
computational experiments on several instances from the literature to show its effectiveness.
The computational results show that the proposed algorithm is competitive against state-
of-the-art methods for these two classes of vehicle routing problems, and is able to solve
to optimality some previously open instances. Moreover, for the instances that cannot be
solved by the proposed algorithm, the final lower bounds prove stronger than those obtained
by earlier methods.

1 Introduction

The multi-depot vehicle routing problem (MDVRP) is an important class of vehicle routing
problem arising in freight distribution and can be defined as follows. We are given a set of
depot locations D and a set of customer locations C, which are assumed to be disjoint (even
if two points share the same physical coordinates, they are still handled as different entities).
With every customer j ∈ C is associated a demand dj. With every depot location i ∈ D is
associated a fleet of size mi. The fleet is assumed to be homogeneous with all vehicles having
the same capacity Q and having to respect a maximum route length of T units. We consider
a graph G = (V,E) with V = D ∪ C and E = {{i, j} : i, j ∈ V, i and j not both in D}.
With every edge e ∈ E is associated a travel time te. The objective is to select a subset of
vehicles and to construct routes that respect the capacity and route length constraints, so
as to visit each customer exactly once, at minimum traveling cost. The capacitated vehicle
routing problem (CVRP) is a particular case of the MDVRP in which |D| = 1, the number
of vehicles to be used is exactly m and the maximum route length constraint is relaxed.

Both problems areNP-hard since they are generalizations of the traveling salesman prob-
lem, therefore polynomial-time algorithms are unlikely to exist unless P = NP [20]. Despite
of the computational complexity of these problems, state-of-the-art heuristic methods can

1

find near-optimal solutions in a matter of seconds [14, 31].
The literature on exact approaches for the MDVRP is sparse. In fact, most authors

have focused on the development of heuristic methods to find good quality solutions quickly
[29, 14, 31]. The most recent exact method reporting results on the MDVRP is that of
Baldacci and Mingozzi [2]. The method is based on the additive bounding procedure of
Christofides et al. [11] applied to several different relaxations of the problem. Ultimately,
the set-partitioning formulation of the MDVRP is solved by means of column generation
strengthened with the so-called strong capacity constraints and clique inequalities. Note that
their modeling approach does not consider the route length constraint and so experiments
are conducted only on those instances without such constraint. A problem closely related
to the MDVRP is the periodic VRP (PVRP), in which the complete planning horizon is
subdivided in periods, and vehicle routes cannot be longer than the length of one period.
The MDVRP can be formulated as a PVRP by realizing that different depots can be modeled
as multiple periods in the context of a PVRP. Therefore, any algorithm that solves the PVRP
can also solve the MDVRP. Baldacci et al. [5] proposed an exact algorithm for the PVRP
that generalizes their former method for the MDVRP but, as remarked by the authors, does
not improve their earlier results.

With respect to the CVRP, the literature on exact methods is broader. The most efficient
exact algorithms for the CVRP are those of Lysgaard et al. [28], Fukasawa et al. [19], Baldacci
et al. [3] and Baldacci et al. [6]. Lysgaard et al. [28] developed the most efficient branch-and-
cut algorithm for the CVRP. They consider a compact two-index vehicle-flow formulation
of the problem and use several classes of valid inequalities for which they provide novel and
efficient separation algorithms. Their method is able to consistently solve problems with up
to 50 customers. Fukasawa et al. [19] developed the first branch-and-cut-and-price algorithm
for the CVRP. They consider a set partitioning formulation in which variables represent
vehicle routes satisfying the capacity constraint. The routes are allowed to contain cycles,
and the pricing subproblem can be solved efficiently by using dynamic programming. This
column generation approach is embedded into a branch-and-cut framework, using several
of the valid inequalities introduced in [28]. Their computational results show that their
method can scale and solve instances with twice as many customers as the previous exact
method of Lysgaard et al. [28]. Baldacci and Mingozzi [2] and Baldacci et al. [6] introduced
a new approach to solve the CVRP based on the additive bounding technique introduced
by Christofides et al. [11] on which several different relaxations of the problem are solved
sequentially in an additive manner. At last, the set-partitioning formulation of the problem
is strengthened with strong capacity cuts and clique inequalities, and solved by column
generation. The last part of the algorithms reduces to solve a pure integer linear problem with
a reduced number of variables. The methods of Baldacci and Mingozzi [2] and Baldacci et al.
[6] differ mainly in the SPPRC relaxation used. While the former relies on elementary routes,
the latter relies now in the so-called ng-routes relaxation, a new pricing subproblem that
produces near-elementary routes in a fraction of the computational effort. This relaxation
is able to produce near-elementary routes in a fraction of the computational effort used to
solve the traditional ESPPRC. While the method of Baldacci and Mingozzi [2] drastically
reduced the computing times with respect to the former method of Fukasawa et al. [19], now
the method based on the ng-routes relaxation proves even faster and is able to solve some
instances that the previous method did not.

2

With respect to algorithmic enhancements for column generation methods for vehicle
routing problems, they can be categorized into two main branches. On the one hand, the
development of new pricing subproblems aimed to achieve the so-called elementary bound
(the lower bound obtained when the set of feasible routes is restricted to those not contain-
ing cycles) without solving the elementary shortest path problem with resource constraints
(ESPPRC) at every iteration, which is known to be strongly NP-hard. On the other hand,
the development of new families of valid inequalities aimed to strengthen the linear relax-
ations of the set-partitioning formulations of these problems.

In the first category, authors have focused in the development of relaxations of the orig-
inal ESPPRC to consider routes with cycles. The shortest path problem under resource
constraints and without cycles of length one or two (2-cyc-SPPRC), introduced by Houck
et al. [22] and later used by Desrochers et al. [17] in the context of the vehicle routing prob-
lem with time windows (VRPTW) is an example of such relaxation. In the 2-cyc-SPPRC,
routes are allowed to contain cycles as long as these cycles do not visit the same node twice
with a separation of one intermediate node. The shortest path with resource constraints and
without cycles of length k for k ≥ 3 introduced by Irnich and Villeneuve [23] (k-cyc-SPPRC)
is another example, in which routes are now allowed to contain cycles as long as no route vis-
its a customer twice with less than k customers of separation. The decremental state-space
relaxation (DSSR) introduced by Righini and Salani [30] achieves the elementary bound by
first relaxing the elementarity constraint, and iteratively imposing elementarity on the nodes
with cycles, until no more cycles are detected. The ng-routes relaxation (ng-SPPRC) intro-
duced by Baldacci et al. [6] is a very efficient relaxation that achieves near-elementary routes
in very short computing times. The intuition behind the ng-routes relaxation is as follows.
During a labeling algorithm, cycles are allowed as long as they do not visit a set of forbidden
nodes, which is constructed from predefined sets of neighbors of every node, and that intu-
itively forces cycles to contain nodes that are far from each other. The set of forbidden nodes
is updated after every extension of the labels and is made in such a way that the efficiency
of the dynamic programming algorithm is not compromised. As a result, very strong lower
bounds can be obtained that in many cases coincide with the elementary bounds. More
recently, Contardo et al. [13] introduced the so-called strong degree constraints (SDC), a
new family of valid inequalities that are proved to impose partial elementarity. The addi-
tion of a strong degree constraint associated to a certain customer imposes that no variable
associated to a route having a cycle on that node will be basic in the LP relaxation. The
dual variable associated to such constraint can be used to derive a sharper rule than that of
classic elementarity.

With respect to the development of new valid inequalities for the CVRP and the MDVRP,
Fukasawa et al. [19] were the first to adapt the inequalities used by Lysgaard et al. [28] for
the CVRP to the set-partitioning formulation. They showed that these inequalities can be
included in the problem without breaking the structure of the pricing subproblem. They
used capacity constraints (CC), strengthened comb inequalities (SCI) and framed capacity
inequalities (FCI) in their algorithm. Baldacci et al. [3] introduced the so-called strong ca-
pacity constraints (SCC), by realizing that the original capacity constraints could be lifted
in the particular case of the set-partitioning formulation, yielding much stronger bounds.
The addition of a SCC, however, imposes the addition of an extra resource in the labeling
algorithm and therefore makes it harder. Jepsen et al. [24] introduced the subset-row inequal-

3

ities (SRI), a particular family of rank-1 Chvátal-Gomory cuts [21]. They showed that these
inequalities can be efficiently separated and included in the pricing subproblems without
compromising the overall performance of the algorithm. Contardo et al. [13] introduced the
y-strong capacity constraints (y-SCC) and the strong framed capacity inequalities (SFCI) in
the context of the capacitated location-routing problem (CLRP). These two inequalities are
shown to dominate both the SCC and the FCI, respectively.

In this paper, we propose a new exact method for the MDVRP based on the solution
of ad-hoc vehicle-flow and set-partitioning formulations strengthened with several classes of
valid inequalities. The set-partitioning formulation is solved by column-and-cut generation,
for which the column generation subproblem is solved using the 2-cyc-SPPRC, and we use
the SDC to impose partial elementarity. Because the SDC may be hard to handle when
their associated dual variables are large, we complement their use with the inclusion of a
new family of valid inequalities to forbid cycles of an arbitrary length. As a result, our
method is able to produce tight lower bounds and to solve to optimality some hard instances
of the MDVRP and the CVRP in short computing times, including some previously unsolved
instances. Moreover, for the instances that remain unsolved, our algorithm provides tighter
lower bounds than existing methods.

The remaining of the article is organized as follows. In Section 2 we introduce the two
formulations for the MDVRP used in this paper, namely a compact two-index vehicle-flow
formulation and a set-partitioning formulation. In Section 3 we present the valid inequalities
used in our method. In Section 4 we present the exact method that solves the MDVRP to
optimality. In Section 5 we report our computational results on selected instances from the
literature for the CVRP and the MDVRP. We conclude the article in Section 6.

2 Mathematical formulations

In this section, we present the two formulations used in this article to model and solve the
MDVRP, namely a vehicle-flow and a set-partitioning formulation. These two formulations
of the problem are exploited at different stages of the algorithm. More precisely, the vehicle-
flow formulation is used to derive a lower bound quickly and perform variable fixing. The
set-partitioning formulation is then considered using the reduced network produced by the
variable fixing procedure performed before.

2.1 Vehicle-flow formulation of the MDVRP

For every depot i ∈ D and customer j ∈ C, let yij be a binary variable equal to 1 iff j is served
by a single-vehicle route departing from depot i. For every e ∈ E, we let xe be a binary
variable equal to 1 iff edge e is used by a vehicle route visiting at least two customers. For
a customer set S ⊆ C, we let r(S) = ⌈d(S)/Q⌉ be a lower bound on the number of vehicles
needed to serve the customers in S due to the capacity constraint, and we let ρ(S) be a lower
bound on the number of vehicles needed to serve the customers in S due to the route length
constraint. Note that while r(S) can be computed in constant time, ρ(S) can be difficult
to compute as it involves the solution of a m-TSP with route length constraints, which is
strongly NP-hard. For a node subset U ⊂ V we let δ(U) be the cutset of U , or equivalently

4

the subset of edges with exactly one extremity in U . For an edge subset F ⊆ E we also
define x(F) =

∑

e∈F xe, and if F ⊆ δ(D), y(F) =
∑

e∈F ye. The vehicle-flow formulation of
the MDVRP is as follows:

min
∑

e∈E

texe + 2
∑

i∈D,j∈C

tijyij (1)

x(δ{j}) + 2y(δ({j}) ∩ δ(D)) = 2 j ∈ C (2)

x(δ{i}) + 2y(δ({i}) ≤ 2mi i ∈ D (3)

x(δ{S}) + 2y(δ(S) ∩ δ(D)) ≥ 2max{r(S), ρ(S)} S ⊆ C (4)

x(δ(S)) ≥ 2[x(δ({h}) ∩ δ(D′)) + x(δ({j}) ∩ δ(D \ D′))] S ⊆ C, h, j ∈ S (5)

D′ ⊂ D

ye ∈ {0, 1} e ∈ δ(D) (6)

xe ∈ {0, 1} e ∈ E (7)

The objective function aims to minimize the total traveling time. Constraints (2) are
the degree constraints that impose each customer be visited exactly once. Constraints (3)
is the fleet size constraint. They impose that at most mi vehicles are used at each depot.
Constraints (4) are the capacity and route length constraints. They impose that at least
max{r(S), ρ(S)} vehicles are used to visit the customers of set S. Constraints (5) are the
path constraints. They forbid routes to have the starting and ending points at two different
depots. Finally, (6)-(7) impose that variables are indeed binary. This formulation is a
particular case of the one introduced by Belenguer et al. [8] for the CLRP, with the only
addition of the route length constraint represented by the constants ρ.

2.2 Set-partitioning formulation of the MDVRP

For each i ∈ D and j ∈ C we let yij be a binary variable equal to 1 iff customer j is served
alone in a route departing from depot i, with cost equal to 2tij . We now let Ω be the
set of routes visiting at least two customers and respecting the capacity and route length
constraints. For a depot i ∈ D, we denote by Ωi the subset of routes starting and ending
i. For each l ∈ Ω, we let θl be a binary variable equal to 1 iff route l is selected, and we
denote by tl its cost, which is equal to the sum of the traveling times along the edges used
by l. For each customer j ∈ C and route l ∈ Ω we let alj be the number of times that
customer j is visited by l. For each depot subset D ⊆ D and customer subset C ⊆ C we let
y(D : C) =

∑

i∈D

∑

j∈C yij . The set-partitioning formulation of the MDVRP is as follows:

5

min
∑

l∈Ω

tlθl + 2
∑

i∈D,j∈C

tijyij (8)

∑

l∈Ω

aljθl + y(D : {j}) = 1 j ∈ D (9)

∑

l∈Ωi

θl + y({i} : C) ≤ mi i ∈ D (10)

yij ∈ {0, 1} i ∈ δ(D) (11)

θl ∈ {0, 1} l ∈ Ω (12)

Once again, the objective function aims to minimize the total traveling cost. Constraints
(9) are the degree constraints that impose each customer be visited exactly once. Constraints
(11)-(12) state the binary nature of the variables. Note that the capacity and the route length
constraints are embedded into the definition of the route set Ω, and therefore do not need
to be explicitely included in the formulation of the problem. For the same reason, the path
constraints (5) are also not needed.

3 Valid inequalities

In this section we present the valid inequalities used to strengthen both formulations pre-
sented earlier. For the first families of inequalities, we refer to them as “weak” because their
inclusion does not impose the addition of an extra resouce in the labeling algorithm. For
the last five classes of inequalities introduced, we refer to them as “strong”, because their
addition imposes the use of additional resource during the labeling algorithm.

3.1 Weak valid inequalities

We call weak valid inequalities to all those inequalities that are valid for formulation (1)
and that can be used in both formulations. These inequalities have the particularity that
the contribution of their duals to the computation of the reduced costs of paths can be
decomposed along the edges defining them, and therefore included in the pricing algorithm
without compromising its performance. We consider some of the valid inequalities available
in the CVRPSEP package [27], namely the framed capacity inequalities, strengthened comb
inequalities, multistar inequalities and hypotour inequalities. We also use some of the in-
equalities introduced by Belenguer et al. [8], Contardo et al. [12], namely the y-capacity cuts,
degree constraints and co-circuit inequalities using the separation algorithms of Contardo
et al. [12].

3.2 Strong degree constraints

The strong degree constraints (SDC) were originally introduced by Contardo et al. [13] for
the CLRP, and they are also valid for the CVRP and the MDVRP. Before presenting the
inequality, let us define some notation. Given a customer j ∈ C and a route l ∈ Ω, we let

6

ξlj be a binary constant equal to 1 iff route l visits node j. For a given customer j ∈ C we
define ξθ(j) =

∑

l∈Ω ξljθl. The SDC associated to node j is

ξθ(j) + y(D : {j}) ≥ 1. (13)

Contardo et al. [13] proved that this constraint imposes partial elementarity on node j,
this is, that no variable θl visiting node j twice or more will take a positive value in the
solution of the linear relaxation of the set-partitioning formulation.

3.3 k-Cycle elimination constraints

We now introduce a new family of valid inequalities that can be seen as a weaker form of the
strong degree constraints. Let k ≥ 1 be an integer constant. Let j ∈ C be a customer and
let l ∈ Ω be a route. Let us define νkl

j as the number of times that route l visits customer
j with at least k nodes between two consecutive appearances of j in the route. In Figure
1 we illustrate by means of an example the behavior of the values νkl

j as k increases. The
following k-cycle elimination constraint (k-CEC) is valid for the MDVRP:

∑

l∈Ω

νkl
j θl + y(D : {j}) ≥ 1. (14)

Because ξlj ≤ νkl
j ≤ alj it follows that the k-CEC is a strengthening of the degree constraint

(9) but a weaker form of the SDC (13). The following proposition shows that the k-CEC for
a given cycle length k and customer j is effective to forbid a cycle of length k or less from
visiting customer j twice.

Theorem 3.1. Suppose that a k-CEC has been added to problem (8)-(12) for customer j
and cycle length k. All routes l ∈ Ω visiting node j twice or more and such that νkl

j < alj
will be non-basic in the linear relaxation of problem (8)-(12). In particular, no route visiting

customer j two consecutive times with k − 1 or less intermediate nodes will take a positive

value.

Proof If we consider the k-CEC and subtract from it the regular degree constraint (9) we
obtain

∑

l∈Ω

(

νkl
j − alj

)

θl ≥ 0

The summation above only has interest for those l such that νkl
j < ali. In that case, it

becomes
∑

l∈Ω,νklj <alj

(

νkl
j − alj

)

θl ≥ 0

This last summation implies that θl = 0 for all l such that νkl
j < alj.

7

0 1 2 1 3 4 1 5 1 6 0

Figure 1: Route l with al1 = 4, ν1l
1 = 4, ν2l

1 = 2 and ν3l
1 = 1

3.4 y-Strong capacity constraints

The y-strong capacity constraints (y-SCC) were also introduced by Contardo et al. [13].
Given a customer subset S ⊆ C and a route l ∈ Ω, we let ξlS be a binary constant equal
to 1 iff route l visits at least one customer in S. We define ξθ(S) =

∑

l∈Ω ξlSθl. Also, let
r(S) = ⌈d(S)/Q⌉ be a lower bound on the number of vehicles that are needed to visit all
customers in S, with d(S) =

∑

i∈S di. Let S ′ ⊆ S be a subset satisfying r(S \ S ′) = r(S).
The following y-strong capacity constraints (y-SCC) is valid for the MDVRP:

ξθ(S) +
∑

i∈D

∑

j∈S\S′

yij ≥ 1. (15)

This inequality dominates the SCC introduced by Baldacci et al. [3] and the y-capacity
constraints (y-CC) introduced by Belenguer et al. [8]. Its addition, however, imposes a
modification in the pricing algorithm to properly handle the associated dual variable.

3.5 Strong framed capacity inequalities

The strong framed capacity inequalities (SFCI) are a lifted form of the original FCI and
were introduced by Contardo et al. [13]. Given a customer subset S ⊆ C (the frame) and a
partition of it (Sk)k∈K , let r(S, (Sk)k∈K) be the solution of the following bin-packing problem.
For each set Sk with accumulated demand d(Sk) ≤ Q, consider one object of size d(Sk). For
each set Sk with accumulated demand d(Sk) ≥ Q consider nk = ⌊d(Sk)/Q⌋ objects of size Q,
plus at most one object of size d(S)−Q×nk (this last object does not appear if d(S) divides
Q). Set the bins to have capacity Q. If r(S, (Sk)k∈K) > r(S) then the following inequality is
valid for the MDVRP:

ξθ(S) +
∑

k∈K

ξθ(Sk) + 2
∑

i∈D

∑

j∈S

yij ≥
∑

k∈K

r(Sk) + r(S, (Sk)k∈K) (16)

Again, the addition of a SFCI requires a modification of the labeling algorithm during
the recursion of the dynamic programming. Indeed, |K|+ 1 additional resources are needed
to properly handle the dual variable associated to a such constraint.

3.6 Subset-row inequalities

We consider two particular cases of subset-row inequalities [24]. Given a customer subset C
of size n odd (we consider n = 3, 5), for every route l ∈ Ω we let nl

C be the number of times
that l visits the customers in C. The following inequality is a valid subset-row inequality for
MDVRP:

∑

l∈Ω

⌊nl
C/2⌋θl ≤ ⌊n/2⌋ (17)

The addition of a subset-row inequality of this form again forces the addition of an
additional resource in the dynamic programming recursion.

8

3.7 Separation algorithms

For the weak constraints, we make use of the separation routines introduced in Lysgaard
et al. [28] and Contardo et al. [12]. For the strong constraints, we use the same strategy
as in Contardo et al. [13]. Constraints SDC and k-CEC are polynomial in number and can
be easily separated by simple inspection. To find violated constraints y-SCC and SFCI,
we verify for each weak constraint y-CC and FCI, if the strong version of such inequality
is violated, and add it to the problem. Finally, for constraints SRI, we do the following.
For n = 3, we check for every triplet (i, j, k) with i < j < k if the corresponding SRI is
violated and add it to the problem. For n = 5, this same procedure becomes impractical.
Thus, we heuristically select the 30 customers with more appearances in the basic solutions
of the current linear problem. We then consider all possible 5-tuples restricted to these 30
customers.

4 The exact method

In this section we describe the exact method used to solve the MDVRP to optimality. We
first present a sketch of the algorithm. Then, we present the exact method decomposed into
three main parts that are described in detail.

4.1 Sketch of the algorithm

In this section we sketch the exact algorithm used to solve the MDVRP. The algorithm is
decomposed in three parts: variable fixing, column-and-cut generation, and column enumer-
ation.

In the first part, the linear programming (LP) relaxation of the two-index vehicle-flow for-
mulation is solved by means of the cutting planes method. Initially, the integrality constraints
are dropped and we consider a restricted problem containing only a subset of constraints,
namely (2)-(3). Constraints (4)-(5) are added as cutting planes as they are expontential in
number. Other inequalities such as multistar inequalities, hypotour inequalities, framed ca-
pacity inequalities, strengthened comb inequalities, y-capacity cuts, degree constraints and
co-circuit inequalities are also added as cutting planes. Note that the capacity and route
length constraints (4) are relaxed by letting the right-hand side be equal to r(S) (i.e., route
length constraints are relaxed). The solution of the LP relaxation of formulation (1)-(6) is
used to perform variable fixing based on the reduced costs of the edge variables (xe)e∈E.

In the second part of the algorithm, a reduced network is considered by a priori discarding
all edges that were fixed to zero in the first stage. The set-partitioning formulation (8)-(12)
is thus considered with the reduced set of edges. The LP relaxation of this problem is
solved by colum-and-cut generation, in which the pricing subproblem corresponds to solve
a 2-cyc-SPPRC for each depot. The problem is strengthened with the use of all inequalities
introduced earlier. Initially, only some families of strong inequalities are added to the problem
and we also let a hard limit on the maximum number of strong cuts. This hard limit
is gradually increased, and each time it is reached we refer to it as a major iteration. To
diversify the addition of cuts, each inequality is ranked according to its violation with respect
to the right-hand side of the inequality.

9

In the third part of the algorithm, at the end of each major iteration, the resulting lower
bound zL is used, together with an upper bound zU of the problem (that can be obtained
with an heuristic method), to enumerate all elementary columns whose reduced costs are
less than or equal to zU −zL. To bound the number of columns generated we set a hard limit
on the maximum number of columns generated of 5 millions. If the enumeration procedure
finishes with success, we consider a last major iteration in which the maximum number of
separated inequalities is set to ∞ for all families in an attempt to strengthen the final lower
bound and thus reduce the number of final columns in the problem.

4.2 First part: variable fixing

In the first stage of the algorithm, we consider formulation (1)-(7) strengthened with all
families of valid inequalities already mentioned. The LP relaxation of this problem is solved
by means of the cutting planes method. The relaxed constraints and the additional valid
inequalities are sorted in the following order:

i. Subtour elimination constraints [16].

ii. y-Capacity cuts [8].

iii. Path constraints [8].

iv. Co-circuit constraints [8].

v. Framed capacity inequalities [1].

vi. Strengthened comb inequalities [28].

vii. y-Generalized large multistar inequalities [12].

viii. Multistar inequalities [28].

ix. Hypotour inequalities [28].

If a subtour elimination constraint is identified, the problem is immediately reoptimized.
The same is applied when a y-capacity cut is identified. The remaining families of valid
inequalities are inspected in order until detecting an inequality whose absolute violation is
at least of 0.2 units, in which case the problem is immediately reoptimized.

When we are not able to identify any violated inequality, we stop and compute a lower
bound zLB of the problem and reduced costs (te)e∈E for the variables (xe)e∈E. This lower
bound, together with a valid upper bound zUB is used to fix to zero all variables xe taking
the value 0 in the current fractional solution and such that

te + zLB ≥ zUB. (18)

Moreover, for instances with integer costs, we replace zUB by the stronger quantity zUB−
0.99. The quantity zUB can be computed using any reasonable metaheuristic, such as the ones
of Vidal et al. [31] or Cordeau and Maischberger [14]. Because implementing such algorithm
is beyond the scope of this article, we use the best known upper bound as reported by Vidal
et al. [31].

10

4.3 Second part: column-and-cut generation

In this section we describe the second part of the algorithm, which aims to solve the LP
relaxation of problem (8)-(12) by column-and-cut generation, so as to provide a valid lower
bound of the problem. We describe the pricing subproblem and the cut separation strategy.

4.3.1 Pricing subproblem

We consider the 2-cyc-SPPRC pricing subproblem. The 2-cyc-SPPRC can provide relatively
strong bounds in very short computing times when compared to other relaxations of the
ESPPRC. The addition of cuts y-CC, FCI and SCI does not affect the structure of the
labeling algorithm producing tight bounds in very short times, that in many cases suffices
to solve the problem. For hard instances, the bounds are strengthened with the use of the
already mentioned strong inequalities. In particular, the addition of the SDC and k-CEC
strengthens the poor bounds of the 2-cyc-SPPRC when the basic solutions contain too many
cycles.

The 2-cyc-SPPRC is solved by means of bidirectional dynamic programming (BDP). In
BDP, labels (or partial paths) are extended until reaching half of the capacity. To produce
complete routes, partial paths are joined pairwise. The details of the complete dynamic
programming method can be found in Contardo et al. [13]. Let us sketch the labeling
algorithm and remark some of the main parts of it, namely the dominance and the fathoming
rules used to discard non-promising labels.

The labeling algorithm starts with an empty label (or partial path) containing a depot
node. For each label L we denote v(L) its terminal node, q(L) the current load of the
vehicle, t(L) the traveled time and t(L) its reduced cost. Each time a label L is extended
to a customer node w, another label L′ is created having v(L′) = w, q(L′) = q(L) + dw and
t(L′) = t(L) + tv(L)w. The reduced cost is updated according to the reduced cost of the edge
{v(L), w} and the dual variables associated to the strong constraints. With each “strong”
constraint C ∈ SDC ∪ y-SCC we associate a boolean resource equal to 1 iff the corresponding
partial path visits at least one customer in the set defining the inequality. For a constraint
C ∈ SFCI, we associate as many binary resources as the size of the partition plus one for
the handle. We let R be the set of these boolean resources, and for each ρ ∈ R we denote
σρ the corresponding dual variable. Each of these boolean resources is updated from 0 to
1 and the associated dual variable is extracted from the reduced cost of that path when a
partial path visits for the first time a node in the corresponding cutset defining the resource,
which we denote by CS(ρ). With each k-CEC C with dual variable σC ≥ 0 associated with
a customer j and a length k, we let κ be an integer resource initially set to k. Every time
that j is visited, we verify if κ ≥ k in which case we subtract σC from the reduced cost of
the path, and reset κ to zero (even if the dual variable is not subtracted, the resource is
reset anyways). If the label was extended to another node different from j, κ is increased of
one unit. We let K be the set of binding k-CEC in the current iteration. With each C ∈
SRI with dual variable σC ≤ 0, we also associate a binary resource rC that now works as
follows. The resource is initialized to zero, and whenever the label reaches a customer in the
SRI, it is updated to one. The following time that the label visits a customer in the SRI, we
subtract σC from the reduced cost of the label and reset the resource to zero. We let S be
the set of the resources associated to SRI inequalities.

11

We use the following dominance rule to discard labels by doing pairwise comparisons.
Let L, L′ be two labels (or partial paths), starting at the same depot (in the case of the
MDVRP), ending at nodes v(L), v(L′), with loads q(L), q(L′), accumulated traveling times
t(L), t(L′) and reduced costs t(L), t(L′). We say that L dominates L′ (and denote it as
L ≻ L′) if

i. v(L) = v(L′).

ii. q(L) ≤ q(L′).

iii. t(L) ≤ t(L′).

iv. t(L)−
∑

C∈S,rC(L)>rC(L′) σC ≤ t(L′)−
∑

ρ∈R,ρ(L)>ρ(L′) σρ −
∑

C∈K,κ(L)<κ(L′) σC .

This dominance rule cannot be solely applied to discard labels in a 2-cyc-SPPRC algo-
rithm. Indeed, it does not consider that labels may or may not be back to the predecessor
node, which may result in dominating a label that can be extended to more nodes than the
dominant. To solve that issue and provide an efficient implementation of the 2-cyc-SPPRC,
Kohl [25] and Larsen [26] define the concept of strongly dominant labels, semi-strongly dom-

inant labels and weakly dominant labels. A strongly dominant label is a label that is not
dominated by any other label and that cannot be extended to its predecessor node due to
the resource constraints. A semi-strongly dominant label is a label that is not dominated by
any other label but is not strongly dominant. Finally, a weakly dominant label is a label that
is dominated only by semi-strongly dominant labels, all of which share the same predecessor
node, which is also different from the predecessor node of the label. Any label that is not
strongly dominant, semi-strongly dominant or weakly dominant can be discarded.

This dominance rule can be sharpened for the case of the CVRP by realizing that con-
dition (iii) can be omitted. Note that this pricing subproblem is exact and can be time
consuming in the presence of too many resources. Hence, we always perform the follow-
ing heuristic pricing before applying the exact procedure. First, we limit the percentage
of edges to κ. To select the edges, we perform the underestimation of the binding strong
constraints (to be explained later in the text) and rank the edges according to the resulting
lower bounds on the edge reduced costs. Second, the SDC and k-CEC are used to impose
the asociated strucral constraints (let us remark that these two families of valid inequalities
cannot be used in an exact pricing to impose structural constraints -i.e. to forbid cycles-
in which case one should resort to the classical dominance rule for elementarity and k-cycle
elimination constraints). The labeling algorithm is run on the modified network with the
additional structural constraints for four diferent values of κ before resorting to the exact
pricing method, namely we use κ = 0.2, 0.4, 0.7, 1.0.

Now, let us present the fathoming rule used to discard a label L based on its reduced cost
t(L) and a completion bound LB(L), computed as follows. Let S be the set of all subset-row
inequalities (as described in 3.6) added to the problem, and let T ⊆ S be a subset of it. Let
C ∈ T be a SRI with associated dual variable σ ≤ 0. Let us define the underestimation of C
as the following procedure: To each edge e with both endpoints in C we subtract σ/2 from
the reduced cost of the edge and discard the resource associated to such constraint. Because
σ is negative, this procedure has as a consequence that the modified reduced cost of a path
is indeed a lower bound of the actual reduced cost. In a similar way, Contardo et al. [13]

12

showed that y-SCC, SFCI and SDC can also be underestimated. The underestimation of a
k-CEC is done in an analogous manner as for the SDC. Indeed, if C is a k-CEC associated
with a cycle length k and a customer j with dual variable σC ≥ 0, we subtract σC/2 from
the reduced cost of every edge having j as one of its endpoints. Now, let us consider the
following auxiliar pricing problem. From all the constraints “strong”, let us keep the resources
associated to those with the largest duals, and perform an underestimation of the remaining
ones. Let us denote by RU the resources in R associated to the constraints that have
been underestimated, KU ⊆ K be the subset of k-CEC that have been underesitimated and
TU ⊆ T be the subset-row inequalities that have been underestimated. Solve the resulting
2-cyc-SPPRC with now less resources, and let f(q, t, j) be the minimum reduced cost among
the partial paths having j as endpoint, with load l ≤ Q− q+ dj and arrival time to j less or
equal than T − t. Similarly, let π(q, t, j) be the predecessor of j in such partial path. Now,
let g(q, t, j) be the second lowest reduced cost not having π(q, t, j) as predecessor node. For
each label L, let u1(L), u2(L), u3(L), u4(L), u5(L) and u6(L) be defined as follows:

u1(L) =
∑

{ρ:ρ∈R\RU ,v(L)∈CS(ρ)}

σρ (19)

u2(L) =
∑

{ρ:ρ∈RU ,v(L)∈CS(ρ)}

σρ (20)

u3(L) =
∑

{C∈K\KU :C is associated to node v(L)}

σC (21)

u4(L) =
∑

{C∈KU :C is associated to node v(L)}

σC (22)

u5(L) =
∑

{C:C∈T \TU ,v(L)∈C,rC(L)=0}

σC (23)

u6(L) =
∑

{C:C∈TU ,v(L)∈C,rC(L)=0}

σC . (24)

For a given label (or partial path) L having v as endpoint, p as predecessor node, with
accumulated capacity of q units and arrival time t, a lower bound on the possible extensions
of L can be computed as

LB(L) = t(L)+u1(L)+u3(L)+u5(L)+
u2(L)+u4(L)+u6(L)

2
+

{

f(q, t, v) if p 6= π(q, t, v)

g(q, t, v) otherwise
(25)

This quantity effectively defines a lower bound on the reduced cost potentially achieved
by the extensions of label L to a complete path, and can be used to discard a label when
the completion bound LB(L) is larger than or equal to zero. Note that because the domain
of functions f, π and g can be extremely large (even infinity if travel times are arbitrary real
numbers), we define them on a limited number of buckets of load and time. The finer the
granularity used in these buckets, the more accurate that the resulting bounds will be, but
also more memory space will be needed to store such quantities.

At this stage of the algorithm, we keep resources for at most 20% of the binding strong
constraints, and underestimate the remaining ones. In addition, we use T = S. Note that

13

different subsets T can be used to derive different completion bounds. After some preliminary
tests, we did not find a clear dominance criterion between different choices of T (we used
T = {∅,S}), which may be an avenue of future research.

4.3.2 Cut separation strategy

The strategy for adding cuts is as follows: first of all, we only add cuts when the current
restricted master problem is proven to be feasible (which may not be true at the beginning
of the column generation, or right after the addition of new valid inequalities). We always
try to add weak inequalities first. When we cannot identify any violated weak inequality, we
try to add columns of negative reduced cost (for which we use first the heuristic pricing and
then the exact pricing algorithm). If we cannot find columns of negative reduced cost, we
separate and add strong valid inequalities. The strategy for adding strong cuts is as follows.
At the first major iteration, only k-CEC are added, for 3 ≤ k ≤ 7. At the second major
iteration, we also include cuts y-SCC, SFCI and SRI for n = 3. In the subsequent iterations,
we also allow the addition of cuts SDC and SRI for n = 5. The maximum number of strong
cuts other than k-CEC after the first major iteration is 100, 200 and 400, respectively.

4.4 Third part: column enumeration

At the end of a major iteration, we use a dynamic programming algorithm similar to the
one used in the 2-cyc-SPPRC to enumerate all columns that may potentially lead to an
improvement of the upper bound. The main difference is the use of a stronger dominance
criterion, and imposing elementarity to forbid the generation of routes containing cycles. In
the dynamic programming algorithm, a label L represents a partial path starting from a
depot, and is composed of the following quantities: the terminal node v(L), the predecessor
label pred(L), the reduced cost t(L), the customers visited V (L), the size of that set |V (L)|,
the load q(L) and the accumulated traveling time t(L). These quantities are computed
accordingly after every extension of a label to its possible successors. Now, a modified
dominance rule is used to discard labels. Indeed, because we enumerate all columns that
may potentially appear in the optimal solution, dominance must be done using a much
stronger criterion. Notably, we say that a label L dominates a label L′ if all of the following
conditions hold:

i. v(L) = v(L′).

ii. q(L) = q(L′).

iii. |V (L)| = |V (L′)|.

iv. V (L) = V (L′).

v. t(L) ≤ t(L′).

Note that although conditions (ii)-(iii) are implied by (iv), they are used to rapidly
discard the dominance of one label with respect to another when any of these conditions
is not satisfied. Note also that because we want to enumerate all feasible routes, only

14

elementary labels are generated and, moreover, label joints are done only using pairs of
labels that are customer-disjoint, this is, that only share the depot and terminal nodes.

This dominance rule, because it is much stronger than the classical dominance used
for the 2-cyc-SPPRC, may not be sufficient to bound the computational complexity of the
enumeration procedure. Therefore, we complement it with a fathoming rule which is based
on the solution of the 2-cyc-SPPRC with all strong resources, after which a completion bound
can be obtained using expression (25).

Similar enumeration procedures have been used in [3, 2, 4, 6, 7, 13] and for more details
on the enumeration procedures we refer to these articles.

5 Computational experiments

We have conducted a series of experiments on several sets of instances from the literature for
both problems considered in this study. For the CVRP, we consider six classes of instances,
namely classes A, B, E, F, M and P. Classes A, B and P were proposed by Augerat [1].
Class E was proposed by Christofides and Eilon [9]. Class F was proposed by Fisher [18].
Finally, class M was proposed by Christofides et al. [10]. All these instances can be found
in the website http://www.branchandcut.org. For the MDVRP, we consider 18 instances
from the dataset proposed by Cordeau et al. [15]. The complete dataset can be found in
http://neo.lcc.uma.es/radi-aeb/WebVRP. The algorithm has been coded in C++, com-
piled using the Intel Compiler v11.0 and run on an Intel Xeon E5462 2.8 GHz with 16GB of
RAM.

In Tables 1-6 we present the computational results obtained with the proposed algorithm
for both problems considered in this study. In these tables, column labeled “UB” repre-
sents the best known solution of the problem, as reported by previous methods. Column
labeled “z∗” represents the best solution found by the proposed method. Under column
labeled “Cutting Planes” we report the lower bound, optimality gap (in %) and CPU time
taken to solve the LP relaxation of problem (1)-(6). Under column labeled “Column and
Cut Generation” we report the results obtained by the column-and-cut generation method.
Column labeled “LBr” represents the lower bound achieved at the end of the LP relaxation.
Column labeled “gapr” represents the gap at the end of the LP relaxation. Column labeled
“tr” represents the time spent at solving the root node. Column labeled “|R| gen” repre-
sents the number of routes generated by the eumeration algorithm. Column labeled “|R|
fin” represents the final number of column kept after the strengthening of the lower bound
and subsequent variable fixing. Column labeled “LBf” represents the final lower bound.
Column labeled “gapf” represents the final gap. Column labeled “tcpx” represents the time
spent by CPLEX to solve the final integer program. Finally, column labeled “ttot” represents
the total CPU time spent. We use bold characters for the instances solved to optimality.
As shown in these tables, our exact method is effective for solving all but three instances
for the CVRP, namely instances M-n200-k16, M-n200-k17 and F-n135-k7. The first two
instances remain open, while the third instance has been already solved by Fukasawa et al.
[19] using a branch-and-cut algorithm. This result confirms the statement already claimed
by previous authors that problems with loose capacity constraints may be difficult to solve
with column generation algorithms, as is the case with problem F-n135-k7. On the other

15

hand, our algorithm has solved instance M-n151-k12 for the first time in less than 6 hours,
which shows that our method takes advantage of the enhacements introduced with respect
to previous column generation methods. For the MDVRP, our algorithm is able to solve all
18 instances considered in our study, including 11 instances that have been solved for the
first time. Moreover, our algorithm has improved the best known solution of instance pr07
which is also proven to be optimal (see the new solution in Figure 2).

16

Instance UB z∗
Cutting Planes Column and Cut Generation
LB gap T LBr gapr tr |R| gen |R| fin LBf gapf tcpx ttot

A-n37-k5 669 669 663.85 0.77 1.72 669.00 0.00 6.23 192 0 669 0.00 0.00 7.95
A-n37-k6 949 949 924.18 2.62 3.92 945.96 0.32 16.50 1951 213 949 0.00 0.14 20.56
A-n38-k5 730 730 716.34 1.87 1.99 728.80 0.16 11.41 2552 68 730 0.00 0.06 13.46
A-n39-k5 822 822 808.57 1.63 5.44 822.00 0.00 14.01 8722 0 822 0.00 0.00 19.45
A-n39-k6 831 831 814.84 1.95 4.21 831.00 0.00 8.62 793 0 831 0.00 0.00 12.83
A-n44-k6 937 937 920.34 1.78 7.77 937.00 0.00 3.73 137 0 937 0.00 0.00 11.50
A-n45-k6 944 944 928.88 1.60 4.68 944.00 0.00 25.71 134 0 944 0.00 0.00 30.39
A-n45-k7 1146 1146 1112.11 2.96 12.96 1146.00 0.00 14.71 879 0 1146 0.00 0.00 27.67
A-n46-k7 914 914 909.33 0.51 3.45 914.00 0.00 3.69 0 0 914 0.00 0.00 7.14
A-n48-k7 1073 1073 1052.51 1.91 10.17 1073.00 0.00 14.14 74 0 1073 0.00 0.00 24.31
A-n53-k7 1010 1010 996.80 1.31 5.04 1010.00 0.00 24.97 4200 0 1010 0.00 0.00 30.01
A-n54-k7 1167 1167 1132.98 2.92 11.1 1167.00 0.00 84.31 169116 0 1167 0.00 0.00 95.41
A-n55-k9 1073 1073 1056.40 1.55 4.43 1073.00 0.00 13.85 1389 0 1073 0.00 0.00 18.28
A-n60-k9 1354 1354 1316.98 2.73 21.39 1354.00 0.00 37.15 40136 0 1354 0.00 0.00 58.54
A-n61-k9 1034 1034 1007.76 2.54 8.41 1032.60 0.14 52.32 17544 169 1034 0.00 0.30 61.03
A-n62-k8 1288 1288 1249.36 3.00 17.09 1288.00 0.00 87.55 65200 0 1288 0.00 0.00 104.64
A-n63-k9 1616 1616 1576.76 2.43 18.36 1616.00 0.00 59.15 7997 0 1616 0.00 0.00 77.51
A-n63-k10 1314 1314 1265.05 3.73 20.84 1309.63 0.33 46.56 18528 1292 1314 0.00 6.26 73.66
A-n64-k9 1401 1401 1349.32 3.69 20.51 1396.18 0.34 170.21 80659 1777 1401 0.00 33.59 224.31
A-n65-k9 1174 1174 1153.41 1.75 13.91 1174.00 0.00 33.40 4033 0 1174 0.00 0.00 47.31
A-n69-k9 1159 1159 1112.56 4.01 19.28 1157.39 0.14 70.32 93739 150 1159 0.00 0.29 89.89
A-n80-k10 1763 1763 1707.14 3.17 55.63 1763.00 0.00 192.26 28161 0 1763 0.00 0.00 247.89
Average 2.25 10.32 0.07 38.03 0.00 1.94 50.28

Table 1: Detailed results on class A for the CVRP

17

Instance UB z∗
Cutting Planes Column and Cut Generation
LB gap T LBr gapr tr |R| gen |R| fin LBf gapf tcpx ttot

B-n38-k6 805 805 800.188 0.60 1.3 805.00 0.00 3.09 0 0 805 0.00 0.00 4.39
B-n39-k5 549 549 548.5 0.09 0.18 549.00 0.00 0.00 0 0 549 0.00 0.00 0.18
B-n41-k6 829 829 826.167 0.34 1.28 829.00 0.00 3.71 0 0 829 0.00 0.00 4.99
B-n43-k6 742 742 733.5 1.15 1.84 740.10 0.26 22.44 23396 466 742 0.00 0.29 24.57
B-n44-k7 909 909 862.5 5.12 0.74 909.00 0.00 5.57 0 0 909 0.00 0.00 6.31
B-n45-k5 751 751 747.367 0.48 2.54 751.00 0.00 18.44 0 0 751 0.00 0.00 20.98
B-n45-k6 678 678 673.566 0.65 6.33 678.00 0.00 14.25 0 0 678 0.00 0.00 20.58
B-n50-k7 741 741 729.6 1.54 0.86 741.00 0.00 2.43 0 0 741 0.00 0.00 3.29
B-n50-k8 1312 1312 1280.52 2.40 9.2 1309.94 0.16 132.39 651978 1471 1312 0.00 2.74 144.33
B-n51-k7 1032 1032 1024.75 0.70 2.41 1032.00 0.00 27.62 91040 0 1032 0.00 0.00 30.03
B-n52-k7 747 747 745.833 0.16 1.9 747.00 0.00 1.60 0 0 747 0.00 0.00 3.50
B-n56-k7 707 707 703.816 0.45 4.28 705.00 0.28 22.18 433 433 707 0.00 0.10 26.56
B-n57-k7 1153 1153 1149.07 0.34 7.39 1153.00 0.00 115.97 0 0 1153 0.00 0.00 123.36
B-n57-k9 1598 1598 1588.11 0.62 8.47 1598.00 0.00 28.84 335 0 1598 0.00 0.00 37.31
B-n63-k10 1496 1496 1479.56 1.10 7.34 1496.00 0.00 81.69 124871 0 1496 0.00 0.00 89.03
B-n64-k9 861 861 859.192 0.21 6.62 861.00 0.00 37.86 0 0 861 0.00 0.00 44.48
B-n66-k9 1316 1316 1297.99 1.37 18.22 1316.00 0.00 184.29 1407605 0 1316 0.00 0.00 202.51
B-n67-k10 1032 1032 1023.96 0.78 5.93 1032.00 0.00 54.92 10562 0 1032 0.00 0.00 60.85
B-n68-k9 1272 1272 1257.17 1.17 16.58 1268.03 0.31 507.01 3278498 14970 1272 0.00 239.26 762.85
B-n78-k10 1221 1221 1204.3 1.37 25.45 1221.00 0.00 144.18 16087 0 1221 0.00 0.00 169.63
Average 1.03 6.44 0.05 70.42 0.00 12.12 88.99

Table 2: Detailed results on class B for the CVRP

18

Instance UB z∗
Cutting Planes Column and Cut Generation
LB gap T LBr gapr tr |R| gen |R| fin LBf gapf tcpx ttot

P-n40-k5 458 458 456.70 0.28 3.47 458 0.00 0.64 0 0 458 0.00 0.00 4.11
P-n45-k5 510 510 504.08 1.16 2.51 510 0.00 9.61 2832 0 510 0.00 0.00 12.12
P-n50-k7 554 554 539.46 2.63 12.16 554 0.00 7.09 822 0 554 0.00 0.00 19.25
P-n50-k8 631 631 555.00 12.04 0.05 626.226 0.76 38.35 21222 803 631 0.00 3.10 41.50
P-n50-k10 696 696 666.86 4.19 14.24 696 0.00 4.88 1514 0 696 0.00 0.00 19.12
P-n51-k10 741 741 714.39 3.59 12.31 741 0.00 7.64 798 0 741 0.00 0.00 19.95
P-n55-k7 568 568 548.27 3.47 10.00 565.667 0.41 35.96 50768 435 568 0.00 1.57 47.53
P-n55-k8 588 588 568.90 3.25 3.81 586.141 0.32 13.11 17054 175 588 0.00 0.49 17.41
P-n55-k10 694 694 660.87 4.77 16.36 689.234 0.69 16.31 25833 1386 694 0.00 6.26 38.93
P-n55-k15 989 989 906.25 8.37 66.99 984.638 0.44 17.56 2943 305 989 0.00 1.20 85.75
P-n60-k10 744 744 717.08 3.62 17.64 744 0.00 10.13 1528 0 744 0.00 0.00 27.77
P-n60-k15 968 968 928.64 4.07 22.76 968 0.00 7.63 543 0 968 0.00 0.00 30.39
P-n65-k10 792 792 766.18 3.26 30.50 792 0.00 11.74 976 0 792 0.00 0.00 42.24
P-n70-k10 827 827 794.19 3.97 32.10 823.171 0.46 66.45 211043 1837 827 0.00 34.06 132.61
P-n76-k4 593 593 588.57 0.75 13.48 593 0.00 349.24 1155576 0 593 0.00 0.00 362.72
P-n76-k5 627 627 616.71 1.64 21.87 627 0.00 1309.02 890384 0 627 0.00 0.00 1330.89
P-n101-k4 681 681 678.40 0.38 24.77 681 0.00 5768.49 359788 0 681 0.00 0.00 5793.26
Average 3.61 17.94 0.18 451.40 0.00 2.75 472.09

Table 3: Detailed results on class P for the CVRP

19

Instance UB z∗
Cutting Planes Column and Cut Generation
LB gap T LBr gapr tr |R| gen |R| fin LBf gapf tcpx ttot

E-n51-k5 521 521 518.231 0.53 5.42 521.00 0.00 8.31 476 0 521 0.00 0.00 13.73
E-n76-k7 682 682 665.471 2.42 29.41 682.00 0.00 349.28 475630 0 682 0.00 0.00 378.69
E-n76-k8 735 735 716.746 2.48 31.55 735.00 0.00 140.21 459826 0 735 0.00 0.00 171.76
E-n76-k10 830 830 797.688 3.89 46.05 826.55 0.42 102.06 620157 2061 830 0.00 35.77 183.88
E-n76-k14 1021 1021 968.041 5.19 64.88 1014.76 0.61 41.51 82822 3976 1021 0.00 34.91 141.30
E-n101-k8 815 815 800.859 1.74 45.36 815.00 0.00 1046.82 1064808 0 815 0.00 0.00 1092.18
E-n101-k14 1067 1067 1024.47 3.99 170.35 1063.45 0.33 404.31 100096 6400 1067 0.00 87.81 662.47
M-n101-k10 820 820 820 0.00 13.16 820.00 0.00 0.00 0 0 820 0.00 0.00 13.16
M-n121-k7 1034 1034 1015.64 1.78 122.42 1034.00 0.00 5590.90 224325 0 1034 0.00 0.00 5713.32
M-n151-k12 1015 1015† 973.245 4.11 373.6 1012.48 0.25 18669.20 3975788 13117 1015 0.00 656.32 19699.12
M-n200-k16 1278 1278‡ 1203.42 5.84 1211.72 1263.00 1.17 264377.00 ∞ ∞ 1263.00 1.17 0.00 265588.72
M-n200-k17 1275 1275‡ 1190.62 6.62 418.55 1265.08 0.78 33932.00 ∞ ∞ 1265.08 0.78 0.00 34350.55
Average 3.22 211.04 0.30 27055.13 0.16 67.90 27334.07
† Optimality proven for the first time
‡ Optimality not proven

Table 4: Detailed results on classes E-M for the CVRP

Instance UB z∗
Cutting Planes Column and Cut Generation
LB gap T LBr gapr tr |R| gen |R| fin LBf gapf tcpx ttot

F-n45-k4 724 724 724 0.00 0.70 724 0.00 0.00 0 0 724 0.00 0.00 0.70
F-n72-k4 237 237 237 0.00 4.00 237 0.00 0.00 0 0 237 0.00 0.00 4.00
F-n135-k7 1162 1162‡ 1159.58 0.21 93.39 1159.85 0.19 > 5 days ∞ ∞ 1159.85 0.19 0.00 > 5 days
Average 0.07 32.70 0.06 0.06 0.00
‡ Optimality not proven

Table 5: Detailed results on class F for the CVRP

20

Instance UB z∗
Cutting Planes Column and Cut Generation
LB gap T LB gap T LB |R| gen |R| fin LBf gapf T CPX T tot

p01 576.87 576.87 543.58 5.77 11.97 576.87 0.00 13.83 148 0 576.87 0.00 0.00 25.80
p02 473.53 473.53 452.73 4.39 4.34 473.25 0.06 52.47 5526 124 473.53 0.00 0.13 56.94
p03 641.19 641.19 614.11 4.22 36.00 640.22 0.15 74.96 12182 271 641.19 0.00 0.21 111.17
p04 1001.04 1001.04 950.22 5.08 151.42 997.38 0.37 458.87 2340469 13242 1001.04 0.00 183.30 793.59
p05 750.03 750.03† 732.27 2.37 32.89 748.30 0.23 9718.07 3212798 12033 750.03 0.00 1431.53 11182.49
p06 876.50 876.50 831.83 5.10 123.96 875.28 0.14 240.73 257010 644 876.50 0.00 0.73 365.42
p07 881.97 881.97 832.50 5.61 99.58 881.81 0.02 289.21 313124 202 881.97 0.00 0.22 389.01
p12 1318.95 1318.95 1273.06 3.48 19.16 1313.80 0.39 1017.10 26393 1196 1318.95 0.00 1.45 1037.71
p13 1318.95 1318.95† 1273.06 3.48 19.16 1318.95 0.00 94.15 0 0 1318.95 0.00 0.00 113.31
p14 1360.12 1360.12† 1273.06 6.40 18.53 1360.12 0.00 47.36 53 0 1360.12 0.00 0.00 65.89
p15 2505.42 2505.42† 2380.36 4.99 239.83 2505.42 0.00 13154.20 39494 232 2505.42 0.00 0.24 13394.27
p16 2572.23 2572.23† 2380.36 7.46 238.05 2572.23 0.00 966.08 3734 0 2572.23 0.00 0.00 1204.13
p17 2709.09 2709.09† 2380.36 12.13 240.42 2709.09 0.00 939.68 255 0 2709.09 0.00 0.00 1180.10
p18 3702.85 3702.85† 3487.65 5.81 859.03 3699.78 0.08 69275.90 1196507 2213 3702.85 0.00 21.13 70156.06
p19 3827.06 3827.06† 3487.65 8.87 878.61 3827.06 0.00 5150.45 17501 0 3827.06 0.00 0.00 6029.06
p20 4058.07 4058.07† 3434.47 15.37 281.39 4058.07 0.00 4637.16 0 0 4058.07 0.00 0.00 4918.55
pr01 861.32 861.32† 849.17 1.41 1.12 861.32 0.00 17.10 14 0 861.32 0.00 0.00 18.22
pr07 1089.56 1077.33† 1057.49 1.84 5.05 1077.33 0.00 2612.95 1100847 0 1077.33 0.00 0.00 2618.00

Average 5.77 181.14 0.08 6042.24 0.00 91.05 6314.43
† Optimality proven for the first time

Table 6: Detailed results on selected MDVRP instances

21

In Tables 7-8 we present comparative results against state-of-the-art exact methods for
the two classes of problems considered in this study. For the CVRP, we consider methods
FLLPRUW [19], BCM [3], BBMR [4] and BMR [6]. For the proposed method, we report
the results under column PM. For each of the methods, we report the number of instances
solved to optimality (opt), the average gap (in %) at the LP relaxation of the set-partitioning
formulation and the average CPU time on the instances that are solved by all methods.
For the MDVRP, we compare our results against method BM [2] which is also based on a
set-partitioning formulation of the problem. We provide a detailed comparison including all
instances considered in our study. However, the average gap and CPU times reported includes
only the instances that are considered by both methods. Moreover, the average CPU times
are computed by taking into account only the instances solved to optimality by both methods.
According to SPEC (http://www.spec.org/benchmarks.html), the machine used by us is
about 4 times faster than the Pentium 4 2.6 GHz used by FLLPRUW and the Pentium 4
2.4 GHz used by method BCM, 2 times faster than the AMD Athlon X2 4200+ 2.6GHz
used by method BM, 50% faster than the Intel Core 2 Duo P8400 2.26GHz used by BBMR
and 25% faster than the Intel Xeon X7350 2.93 GHz used by method BMR. As the results
show, our method is competitive against other exact methods for the CVRP, being able to
obtain the tightest average gaps at the LP relaxation for all classes of instances. In terms of
computing time, our method is comparable to methods BCM, BMR and BBMR. However,
it is more robust than these three methods as it solves more problems and achieves better
bounds. When compared to method FLLPRUW, our method in general is much faster in
most instances, however it fails to solve problem F-n135-k7 that is solved by the authors
using a branch-and-cut method. For the MDVRP, our method is more robust than method
BM. In fact, it solves all instances also solved by method BM plus two instances that their
algorithm fails to solve. For the commonly solved instances, the CPU times are comparable
but our method in general achieves tighter lower bounds at the LP relaxation.

Class NP
FLLPRUW BCM BBMR BMR PM

opt gap t opt gap t opt gap t opt gap t opt gap t
A 22 22 0.81 1961.18 22 0.20 118.07 22 0.30 22.00 22 0.13 30.27 22 0.07 59.26
B 20 20 0.47 4763.00 20 0.16 417.17 20 0.10 66.00 20 0.06 66.75 20 0.05 88.99

E-M 12 9 1.19 42614.50 8 0.69 1025.13 9 0.50 249.00 9 0.49 268.13 10 0.30 909.79
F 3 3 0.14 64.50 2 0.11 163.50 2 0.06 2.35
P 17 17 1.07 3572.53 15 0.39 272.07 17 0.20 54.00 17 0.23 39.80 17 0.18 60.09

Total 74 71 65 68 70 71
Average 0.84 8198.62 0.36 357.28 0.28 70.86 0.21 72.97 0.13 173.28

Table 7: Summary results for the CVRP

6 Conluding remarks

In this article we have presented a new exact method for a multi-depot vehicle routing
problem under capacity and route length constraints. The problem is modeled using ad-
hoc vehicle-flow and set-partitioning formulations, and solved the first by the cutting planes
method and the second by column-and-cut generation. Several families of valid inequalities
are used to strengthen the lower bounds achieved by both formulations, including a new

22

Instance
BM PM

gap t gap t
p01 0.00 10.90 0.00 25.80
p02 0.30 54.40 0.06 56.94
p03 0.10 92.10 0.15 111.17
p04 0.70 5106.90 0.37 793.59
p05 2.50 0.23 11182.49
p06 0.40 104.30 0.14 365.42
p07 0.50 294.40 0.02 389.01
p12 1.40 463.70 0.39 1037.71
p13 0.00 113.31
p14 0.00 65.89
p15 0.80 0.00 13394.27
p16 0.00 1204.13
p17 0.00 1180.10
p18 0.08 70156.06
p19 0.00 6029.06
p20 0.00 4918.55
pr01 0.00 18.22
pr07 0.00 2618.00

Average 0.74 875.24 0.15 397.09
Opt 7/18 18/18

Table 8: Comparison for the MDVRP

Depot Load Time Route
73 193 242.15 27 60 70 30 42 19 9 11 6 33 65 10 31 20 18 71 36
74 193 220.025 49 61 37 58 7 43 26 23 1 64 47 12 68
75 196 125.659 8 45 15 16 3 56 54 22 34 44 62 69
76 196 288.487 13 59 51 17 41 50 57 24 63 5 72 53 46 28 29 52
77 74 90.333 14 67 40 4 55 21 48 66
78 96 110.676 25 32 39 38 2 35

Figure 2: New solution of value 1077.33 for instance pr07

23

family of valid inequalities that is shown to forbid cycles of an arbitrary length. As a result,
our method is able to produce the tightest lower bounds for two classes of problems, the
MDVRP and the CVRP, on the instances considered in our study when compared to state-
of-the-art methods, and is able to solve 12 open instances, one for the CVRP and 11 for the
MDVRP. We can identify several avenues of future research. For instance, improving the
cutting planes would result in an even faster and more robust pricing algorithm, which would
be of great use for solving poorly constrained instances. Another avenue of further research
would be the generalization of the k-CEC and SDC cuts to forbid other types of cycles, in
the spirit of the ng-routes relaxation. Another possible avenue of further research would be
to investigate the impact in the computing times of the ng-routes relaxation when combined
with the k-CEC and SDC to produce near-elementary bounds. Finally, let us remark that
the SDC and k-CEC are two families of valid inequalities that can be adapted to several
other classes of vehicle routing problems, like vehicle routing problems with time windows,
multiple-echelon vehicle routing problems or multiple-period vehicle routing problems. Thus,
future exact algorithms for these classes of problems should consider the inclusion of these
cuts.

References

[1] P. Augerat. Approche polyhédrale du problème de tournées de véhicules. PhD thesis,
Institut National Polytechnique de Grenoble, France, 1995.

[2] R. Baldacci and A. Mingozzi. A unified exact method for solving different classes of
vehicle routing problems. Mathematical Programming, 120:347–380, 2009.

[3] R. Baldacci, N. Christofides, and A. Mingozzi. An exact algorithm for the vehicle routing
problem based on the set partitioning formulation with additional cuts. Mathematical

Programming, 115:351–385, 2008.

[4] R. Baldacci, E. Bartolini, A. Mingozzi, and R. Roberti. An exact solution framework
for a broad class of vehicle routing problems. Computational Management Science, 7:
229–268, 2010.

[5] R. Baldacci, E. Bartolini, A. Mingozzi, and A. Valletta. An exact algorithm for the
period routing problem. Operations Research, 59:228–241, 2011.

[6] R. Baldacci, A. Mingozzi, and R. Roberti. New route relaxation and pricing strategies
for the vehicle routing problem. Operations Research, 59:1269–1283, 2011.

[7] R. Baldacci, A. Mingozzi, and R. Wolfler-Calvo. An exact method for the capacitated
location-routing problem. Operations Research, 59:1284–1296, 2011.

[8] J. M. Belenguer, E. Benavent, C. Prins, C. Prodhon, and R. Wolfler-Calvo. A branch-
and-cut algorithm for the capacitated location routing problem. Computers & Opera-

tions Research, 38:931–941, 2011.

24

[9] N. Christofides and S. Eilon. An algorithm for the vehicle dispatching problem. Oper-

ational Research Quarterly, 20:309–318, 1969.

[10] N. Christofides, A. Mingozzi, and P. Toth. The Vehicle Routing Problem. Wiley, Chich-
ester, UK, 1979.

[11] N. Christofides, A. Mingozzi, and P. Toth. Exact algorithms for the vehicle routing prob-
lem, based on spanning tree and shortest path relaxations. Mathematical Programming,
20:255–282, 1981.

[12] C. Contardo, J.-F. Cordeau, and B. Gendron. A computational comparison of flow
formulations for the capacitated location-routing problem. Technical Report CIRRELT-
2011-47, Université de Montréal, Canada, 2011.

[13] C. Contardo, J.-F. Cordeau, and B. Gendron. A branch-and-cut-and-price algorithm
for the capacitated location-routing problem. Technical Report CIRRELT-2011-44,
Université de Montréal, 2011.

[14] J.-F. Cordeau and M. Maischberger. A parallel iterated tabu search heuristic for vehicle
routing problems. Computers & Operations Research, 39:2033–2050, 2012.

[15] J.-F. Cordeau, M. Gendreau, and G. Laporte. A tabu search heuristic for periodic and
multi-depot vehicle routing problem. Networks, 30:105–119, 1997.

[16] G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson. Solution of a large-scale traveling
salesman problem. Operations Research, 2:393–410, 1954.

[17] M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm for the
vehicle routing problem with time windows. Operations Research, 40:342–354, 1992.

[18] M. L. Fisher. Optimal solution of vehicle routing problems using minimum k-trees.
Operations Research, 42:626–642, 1994.

[19] R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi de Aragão, M. Reis, E. Uchoa, and R. F.
Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing problem.
Mathematical Programming Series A, 106:491–511, 2006.

[20] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory

of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[21] R. E. Gomory. Outline of an algorithm for integer solutions to linear problems. Bulletin
of the American Mathematical Society, 64:265–279, 1958.

[22] D. Houck, J. Picard, M. Queyranne, and R. Vemuganti. The travelling salesman problem
as a constrained shortest path problem: theory and computational experience. Opsearch,
17:93–109, 1980.

[23] S. Irnich and D. Villeneuve. The shortest path problem with resource constraints and
k-cycle elimination for k≥3. INFORMS Journal on Computing, 18:391–406, 2006.

25

[24] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. Subset-row inequalities ap-
plied to the vehicle-routing problem with time windows. Operations Research, 56:497–
511, 2008.

[25] N. Kohl. Exact methods for time constrained routing and related scheduling problems.
PhD thesis, Institute of Mathematical Modelling, Technical University of Denmark,
Lyngby, Denmark, 1995.

[26] J. Larsen. Parallelization of the Vehicle Routing Problem with Time Windows. PhD
thesis, Department of Mathematical Modelling, Technical University of Denmark, 1999.

[27] J. Lysgaard. CVRPSEP: A package of separation routines for the capacitated vehicle

routing problem, December 2003.

[28] J. Lysgaard, A. N. Letchford, and R. W. Eglese. A new branch-and-cut algorithm
for the capacitated vehicle routing problem. Mathematical Programming, 100:423–445,
2004.

[29] J. Renaud, G. Laporte, and F. F. Boctor. A tabu search heuristic for the multi-depot
vehicle routing problem. Computers and Operations Research, 23:229–235, 1996.

[30] G. Righini and M. Salani. New dynamic programming algorithms for the resource
constrained elementary shortest path problem. Networks, 51:155–170, 2008.

[31] T. Vidal, T. G. Crainic, M. Gendreau, N. Lahrichi, and W. Rei. A hybrid genetic
algorithm for multi-depot and periodic vehicle routing problems. Operations Research,
Forthcoming, 2012.

26

