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RÉSUMÉ
 

La Formation de PinnacJe contient des concentrations de mmeraux lourds 
titanifères près de Sutton, Québec. Ces métasédiments font partie d'une séquence 
volcano-sédimentaire au sein du Groupe de Oak Hill, dans la Zone de Humber des 
Appalaches québécoises. Les paléoplacers de Sutton ont subi deux événements 
métamorphiques: à l'Ordovicien ct au Silurien. Des processus post-dépositionnels 
d'enrichissement ont transformé les grains d'ilménite riches en fer en une phase 
résiduelle se rapprochant d'une composition pure en Ti02. L'événement Silurien de 
rétrochevauchement a permis la cristallisation métamorphique du rutile à partir de ces 
phases titanifères résiduelles. Une relation spatiale existe entre la distribution du rutile 
métamorphique et la structure régionale de rétrochevauchement, la faille Brome. Cette 
relation est aussi corroborée par les valeurs 8180eau en équilibre avec la magnetite. 

Le métamorphisme a aussi provoqué le transfelt d'éléments et un changement de 
la fugacité d'oxygène dans les métasédiments riches en titane. Une zonalité 
compositionnelle est observée autour des concentrations semi massives de minéraux 
lourds. Le fer lessivé par les fluides métamorphiques a ensuite été incorporé dans des 
silicates et d'autres oxydes. Ainsi, les minéraux titanifères ont été complètement purgés 
de leur contenu en fer et ont recristallisé en rutile. 

De nouvelles concentrations de minéraux lourds titanifères on été trouvées dans 
l'unité à la base du Pinnacle, c'est-à-dire les phyllades du CaU Mill. De telles 
concentrations titanifères n'ont jamais été décrites au sein du CaU Mill. C'est pourquoi 
l'origine du Cali Mill doit être réinterprétée à la lumière de ces minéraux de fe-Ti. Notre 
nouvelle interprétation suggère que dans la région de Sutton, les sédiments du Cali Mill 
et du Pinnacle proviennent de la même source. Cependant, des différences majeures au 
niveau des minéraux lourds distinguent les deux unités. Ces différences s'expliquent 
principalement par l'intensité et la durée des processus d'enrichissement des minéraux de 
fe-Ti. Nous avons conclu que le Cali Mill était issu de l'érosion d'une source latéritique, 
tandis que l'érosion de la partie non affectée par la météorisation a formé les sédiments 
du Pinnacle. 

Mots-clés: Titane, rutile, métamorphisme, ilménite, altération, fer, oxyde, Sutton, 
Pinnacle, paléoplacer, pseudorutile. 



ABSTRACT
 

The Pinnacle Formation hosts concentrations of titaniferous heavy minerais near 
Sutton, Quebec. These metasandstones are included in a volcano-sedimentary sequence 
of the Oak Hill Group, in the Humber Zone of the Quebec Appalachians. The Sutton 
paleoplacers llnderwent two mctamorphic events: during Ordovician and Silurian time. 
Post-depositional enrichment processes transformed iron-rich ilmenite grains into a 
nearly-purc Ti02 residual phase. Late metamorphic crystallization of rutile from these 
porOLlS resicJual Ti02 phases occurred during a backthrusting event in Silurian time. A 
spatial relationship between the distribution of metamorphic rutile and the main 
backthrusting structure of the area, the Brome Fault, exists and is cOlToborated by 
8 180wJler value in equilibrium with metamorphic magnetite. 

Metamorphism also induced element transfer and change in f02 in the titanium­
rich metasediments. A compositional zonality is observed around semimassive 
concentrations of heavy minerais. Metamorphic fluids leached iron which migrated 
outward to be incorporated into other oxides and silicates. As a result, titaniferous 
minerals arc completely purged of their iron content and recrystallized as rutile. 

New occurrences oftitaniferous heavy minerais are described within the subjacent 
unit of the Pinnacle, i.e. the CaU MiU Slate. Such titaniferous concentrations have never 
been dcscribed in the Cali Mill. Therefore, the origin of the Cali Mill has been re­
interpreted using new evidences based on the presence of these fe-Ti oxides. Our new 
interpretation sllggests that, in the vicinity of Sutton, the CaU Mill and its overlying unit, 
the Pinnacle, have the same source rocks. However, major differences exist between 
heavy minerais of each unit. The timing of weathering and post-depositional enriehment 
of the Ti-minerais are the principal cause of these differences. We conclude that the CaU 
Mill was derived from the erosion of a lateritized source rock whereas the Pinnacle was 
formed from the same, but unweathered, parent rock. 

Key words: Titanium, rutile, metamorphism, ilmenite, alteration, iron, oxide, Sulton, 
Pinnacle, paleoplacer, pseudorutile. 
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Geographical position of the Sutton area (star) and its position relative to 
the outcropping Grenville Provincc. 

Geological map of the Sutton area showing thc distribution of 
semimassive beds (cirele) and disseminated laminations ofheavy minerais 
(triangle). Numbers in the circle and triangle represent the % vol. of rutile. 

Diagrarn showing the evolution of the Sutton heavy minerais through time. 

Geological map of the Sutton arca and its position relative to the Grenville 
Province (after Colpron, 1992, and Colpron et a!., 1994). The inset shows 
the paleoequator position of the region during Cambrian time (Irving, 
1981 ). 

Schema tic stratigraphie column of the Pinnacle Formation and its four 
units (modified from Dowling, 1988) showing the heavy minerai 
concentrations of the middJe Pinnacle unit. 

Distribution of the heavy minerais in the premetarnorphic and 
metamorphic (italics) assemblages. The central colurnn represents the 
heavy mineraI percentages observed in the samples. The right column 
represents the interpreted pre-weathered (and premetamorphic) 
equivaJence of sorne heavy minerais. 

Photomicrographs of metamorphic minera 1assemblages observed under 
plane polarized transmitted light. A) Ti-free magnetite, showing chlorite in 
its pressure shadow. ChI = chlorite, mag = magnetite, qtz = quartz. B) 
Detrital tourmaline grains with metamorphic overgrowths of tourmaline. 
Met-tUf = metamorphic tourmaline, qtz = quartz, tur = tourmaline. 

Photomicrographs ofhemo-ilmenite grains showing features that are 
interpreted to represent d ifferent stages of iron Jeaching (observed under 
oil in natural reflected light). A) Stage l pitted hemo-ilmenite grain. Note 
that the hematite lamellae are not affected. Hem = hematite, Pit-ilm = 
pitted ilmenite. B) Stage 2 pscudorutile grain showing a more 
homogeneous texture. Voids are preferentially developed along hematite 
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exsolution planes. Ps = pseudorutile, v = void. C) Stage 3 mesh-tcxtured 
grain of anatase showing well-developed porosity. Ant = anatase. D) Stage 
3 partially mesh-textured anatase grain with residual pitted i1menite 
showing an exsoJution pattern paralleJ to the nanocrystalline texture of the 
anatase grain (indicated by white lines). E) Stage 4 neorutilc crystals 
developed from nanocrystalline anatase. Rut = rutile. F) Single grain of 
Stage 4 coarse-grained neorutile. 

Figure 2.6 Photomicrographs of rutile that nucleated and grew from the 
nanocrystalline anatase interfaces (observed under oil in natura] reflectcd 

light). Anatase shows lightcr internai reflections than rutile. Rutile has a 
more homogeneous aspect. Ant = anatase, rut = rutile. 

Figure 2.7	 Diagram showing the progressive enrichment in Ti02 of the Fe-Ti oxides 
(pitted-ilmenite, pseudorutile, anatase/rutile), analyzed using a 
microprobe (see Appendix A). The accepted limit for iron in 
titanium oxides is shown by the vertical dash line (10%, according to 
Stanaway 1994). 

Figure 2.8	 Photomierographs of a hemo-i lmenite grains trapped by metamorphic 
magnetite (observed under oil in natural reflected light). A) The apparent 
leaching of the trapped gruin is charaeteristic of pitted hemo-i Imenite of 
stage 1. Note that the hematite lamellae are not affected, which is typical 
of this stage of leaching. Hem = hematite, mag = magnetitc, pit-ilm = 
pitted i1menite. B) Trapped pseudorutile grain corresponding to Stage 2. Ps 
= pseudorutile. C) Partially trapped grain. The exposed part shows a 
deeper leaching level and comprises nanocrystalline anatase of Stage 3. 
The trapped part shows a different leaching level, corresponding to pitted 
hemo-ilmenite of Stage 1. Note that the exsolution lamellae of hematite 
are still preserved in the trapped part. Ant = anatase. 

Figure 2.9 Histogram showing the percentage of different Fe-Ti oxide grains 
according to their stage of alteration (pitted hemo-i1menite, pseudorutile, 
anatase and rutile), based on a petrographie study performed on more than 
3,000 grains from across the region. A) Grains trapped in magnetite 
(n=367). B) Free grains (n=2,828). Note that trapped grains are dominantly 
pitted hemo-ilmeni te or pseudorutile, whereas more than 70% of free 
grains are anatase or rutile. 

Figure 2.10	 Geographical distribution and relative abundances of rutile and anatase 
from seleeted locations (squares). Rutile is dominant near the Brome Fault, 



XII 

but the proportion drops sharply to the west where anatase is more 
abundant. 

Figure 2.11 Histogram showing caJculated 0180 values ofwater in equilibrium with 
metamorphic magnetite. 

Figure 2.12 Contour lines of calculated 0180 values of water showing a distribution 
parallel to the Brome Fault. 

Figure 3.1. Geological map of the Sutton area and its position relative to the Grenville 
Province (after Colpron, 1992, and Colpron et al., 1994). 

Figure 3.2. Photomicrographs of the different zones observed under plane polarized 
transmitted light, except "A" under cross polarized light. A) Country rock; 
B) Zone A; C) Zone B; D) Zone C; E) Oxide zone. Qtz = quartz, Ms = 

muscovite, Mag = magnetite, Chi = chlorite, Rt = rutile. 

Figure 3.3 Diagram showing the mineraJogical variations according to the different 
zones. The proportion of magnetite is indicated as percentage of volume. 
The weight percent of iron is indicated for chlorite. (20 Samples) 

Figure 3.4 A) Photomicrograph of a detrital tourmaline grain with a metamorphic 
overgrowth of iron-rich tourmaline observed under plane polarized 
transmitted light. Tur: tourmaline; Fe-Tur: ferriferous tourmaline 
overgrowth. B) Iron mapping of a tourmaline grain using a JEOL JXA­
8900 microprobe, accelerating voltage of 15kV, specimen current of 
20nA. The scale for iron content is showing in the right inset. 

Figure 4.1 Geological map of the Sutton area and its position relative to the Grenville 
Province (after Colpron, 1992, and Colpran et al., 1994). The inset shows 
the paleoequator position of the region during Cambrian time (Irving, 
198 I). 

Figure 4.2 Schematic stratigraphie column of the Pinnacle Formation and its four 
units (modified from Dowling, 1988) showing the heavy mineraI 
concentrations of the middle Pinnacle uni t. 
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Figure 4.3 Photograph of an outcrop showing the Cali Mill phyllite in contact with 
the Pinnacle sandstones. 

Figure 4.4 Photomicrographs of metamorphic minerai assemblages of the Cali Mill 
Slate observed under plane polarized transmitted light. Hem = hematite, 
ms = muscovite, qtz = quartz. 

Figure 4.5 Photograph of an outcrop showing a heavy mineraI bed (h.m.) within the 
Cali Mill phyllite. 

Figure 4.6 Photomicrographs of the Cali Mill heavy minerai beds observed in natural 
reflected light. A) Ilmeno-hematite constitlltes the main detrital fraction. 
IIm-hem = ilmeno-hematite. B) Fine-flakes ofTi-free hematite (under oil). 
Hem = hematite. C) Ti-free hematite sllrrounding a detrital grain. Note the 
absence of ilmenite exsolutions. 

Figure 4.7 Photomicrographs of a Fe-Ti oxide grains observed under oil in natural 
reflected light. A) A pseudorutile grain dissociated into rutile and 
hematite. Note that the dissociation occurs in the middle of the grain, 
leaving the margin undissociated. Hem = hematite, Ps = pseudorutile, Rt = 

rutile. B) A pseudorutile grain transformed into nltile at the contact with 
other grains. C) A pseudorutile grain transformed into rutile at the contact 
with a silicate. Zm = zircon. D) Horizons of nanograins of anatase. Ant = 

anatase. 

Figure 4.8 Photograph of an oLltcrop showing a conglomeratic horizon with large 
chloritoid pebbles. 

Figure 4.9 Photomicrographs of metamorphic minerai assemblages of the Pinnacle 
sandstones observed under plane polarized transmitted light. Hem = 

hematite, ms = muscovite, qtz = quartz. 

Figure 4.10 Photomicrographs of hemo-ilmenite grains showing features that are 
interpreted to represcnt different stages of iron leaching (observed under 
oil in natural reflected light). A) a pitted hemo-ilmenite grain. Note that 
the hematite lamellae are not affected. Hem = hematite, Pit-ilm = pitted 
ilmenite. B) a pseudorutile grain showing a more homogeneous texture. 
Voids are preferentially developed along hematite exsolution planes. Ps = 

pseudorutile, C) a mesh-textured grain of anatase showing well-developed 
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porosity. Ant = anatase. D) a neorutile crystals developed from 
nanocrystalline anatase. Rut = rutile. E) Single grain of Stage 4 coarse­
grained neoruti le. 

Figure 4.11 Diagram showing the major differences between the Cali Mill Slate and 
the Pinnacle sandstones. 

Figure 4.12 Photomicrographs of Fe-Ti oxides observed in natural reflected light. A) 
lImeno-hematite grain of the Cali Mill. Note the spherical shape. Hm-hem 
= ilmeno-hematite. B) An elongated grain of hemo-ilmenite from the 
Pinnacle sandstones. Hem-ilm = hemo-ilmenite. 

Figure 4.13 Photomicrographs of heavy mineraIs observed in natural reflected light. A) 
Cali Mill massive heavy minerai concentration. H.M. = heavy minerais. B) 
Pinnacle semimassive heavy minerai concentration. The matrix is the dark 
gray. 

Figure 4.14 Diagram showing the progressive enrichment in Ti02 of the Fe-Ti oxides 
(pitted-ilmenite, pseudorutile, anatase/rutile) of Sutton Cali Mill and 
Pinnacle). 

Figure 4.15 Photomicrographs of a Cali Mill heavy mineraI bed observed in natural 
reflected light. A coarse leucoxene grain among tiner heavy minerai 
grains. H.M. = heavy minerais. 

Figure 4.16 Schematic of an hypothetical weathered source rock of the Lower Oak Hill 
Group (for the Cali Mill and the Pinnacle). 



Introduction 

Metamorphism is known to modify existing ore deposits (Marshall et al., 2000). 

Mineral changes and/or deformation induced by temperature and pressure elevation can 

either destroy an orc deposit or contribute to its enrichment (Marshall et al., 2000). 

Metamorphosed titaniferous paleoplacers occur near the Sutton area, in the Quebec 

Appalachians. The impact of metamorphism on these titaniferous concentrations has been 

investigated by thc author from 2003 to 2006. 

The early field works revealed that residual titanium enrichment occurred. 

Through ail the geological history of these paleoplacers, from the source rock to present, 

via transport, deposition, reworking, diagenesis, metamorphism, and deformation, 

enrichment could have occurred. What is exactly the contribution of metamorphism and 

its timing in the formation of the Sutton titaniferous paleoplacers? Effects of 

metamorphism on titaniferous deposit are poorly documented, hence the challenge of this 

project. 

First, a detai.led mapping and sampling of the titaniferous showings of the region 

have been done. Thcn, a preliminary investigation of the timing of enrichment was done 

from petrographie observations via thin sections. Finally, major elements and isotopical 

analysis were completed to confirm earlier observations. 

This document is subdivided into four chapters. Chapter 1 is a review of literature 

about enrichment processes which can be involved during the whole formation of a 

placer. It also indicated that the Sutton metamorphosed paleoplacers are not consistent 

with any conventional model, thus represent a new type oftitaniferous deposit. 

Chapter 2 describes the mineralogy of the Fe-Ti oxides present in the Sutton 

paleoplacers. It focuses on the contribution and timing of metamorphism to the 

enrichment processes. This chapter has been submitted and accepted for publication in 

Economie Geology. 
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Chapter 3 focuses on the changes induceu by metamorphism and how they affect 

the chemical composition of titaniferous minerais present in the paleoplacers. The 10z 
and minerai changes during metamorphism are therefore described. The influence of 

Fez+-bearing mineraIs (ilmenite) on metamorphic fluids was also discussed. This paper 

has been submitted as a short paper in the journal Mineralium Deposita. 

Chapter 4 describes new occurrences of titaniferous concentrations which were 

found during field works. These new heavy minerai concentrations occur within another 

stratigraphical unit, immediately below the formation hosting the paleoplacers. The 

purpose of this last chapter is to re-interprete the origin of this unit based on these 

occurrences of Fe-Ti oxides. This manuscript is in preparation for submission. 

References:
 
Marshall, B., Vokes, F.M., Larocque, A.c.L., 2000, Regional metamorphic
 
remobilization: upgrading and formation of ore deposits. In Spry, P.G., Marshall, B.,
 
Vokes, F.M. (editors), metamorphosed and metamorphogenic ore deposits, Reviews in
 
Economie Geology, v. Il., p.19-38.
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Low-grade metamorphic terrains: a potential source rock for rutile
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Abstract 

Titanium dioxide (Ti02) is an indus trial minerai used as a pigment in paint, paper and 

plastic. The chloride pigment process actually used by the industry requires a specifie 

mineralogy : emiched ilmenite or rutile. Although ilmenite is usually the predominant 

oxide in heavy minerai placers, rutile represents the optimal feedstock for the chloridc 

pigment process. However, ilmenite can form huge economic resources whcn chemical 

enrichments occur. Therefore, exploration for titanium deposits must focus on chemical 

processes which could transform uneconomic titanium mineraI into chloride pigment 

process compatible phase. Such chemical enrichment processes include weathering, 

hydrothermal alteration and metamorphism which could affect either the source rock or 

directly the placer deposits. High-grade metamorphism-upper amphibolite, granulite 

and eclogite facies-is the most efficient natural process which transforms titaniferous 

silicates into oxide. Moreover, such granulite facies rock are usually exposed over several 

thousands of square kilometers, thus constituting the number one target in titanium 

exploration in terms of source rock regions. By contrast, low-grade metamorphism has a 

deleterious effect on titanium mineralogy by incorporating titanium into silicates. 

Therefore, low-grade metamorphic terrains were systematically rejected as rutile-bearing 

rocks. Few exceptions have been reported where rutile is preserved in low-grade 

metamorphic rocks. Such rocks are generally Ca-poor pelites where the preserved rutile 

probably cornes from the erosion of high-grade metamorphosed source rocks. Our recent 

works revealed that a rutile-generating process could occur on ilmenite-rich sediments 

during low-grade metamorphism. Such titanium-rich sandstones constituted an 

intermediate sedimentary host in which enrichment processes occur. The further erosion 

of such rocks can locally form unexpected rutile-rich placers. The Sutton region, Quebec 

Appalachians, hosts such rutile-bearing low-metamorphic rocks. The Sutton titanium 

deposit is a key example of rutile crystallization during metamorphism. This opens a 

whole new range of potential source for rutile via an intermediate sedimentary host 

within low-grade metamorphic terrains. 
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Introduction 

Titanium dioxide (Ti02) is an industrial minerai used as a pigment in paint, paper 

and plastic. Actually, placers are the main economic deposits where titanium minerais are 

concentrated. Although titanium is very abundant in the crust (9th in abundance), a right 

combination of mineralogy, source rock, chemical and mechanical enrichment processes 

is required to form economic placer deposits. Therefore, exploration for titanium deposits 

can be seen in terms of a source rock-erosion-transport-deposition cycle in which 

chemical and mechanical enrichment processes occur. These enrichment processes are 

determinant in forrning economic placers. This chapter proposes to first review every 

stage of the cycle and then how chemical and/or mechanical processes contributed to the 

enrichment of titanium minerais. ln the light of this cycle, a new potential source rock for 

rutile will be described. A key example is the Sutton rutile deposits in the Quebcc 

Appalachians, in which low-grade metamorphism contributed to the beneficiation of 

deposits during the cycle. 
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Parent rock 

Titanium occurs either into silicates or oxides in a given source rock. Mineralogy 

IS the most important factor in the formation of a titanlferous placer. Oxides are 

advantageous over silicates in the formation of a placer, because their hardness, density 

and their relative resistance to chemical alteration make them easier to be preserved and 

concentrated in sediments (Force, 1991 a). Biotite, amphibole and titanite are the most 

common Ti-bearing silicates, which are general/y present in high proportion in rocks. 

However, these minerais do not distinguish themselves in terms of hardness, chemical 

stability and density, thus cannot be concentrated as placers. Moreover, no industrial 

processes have been developed to isolate the Ti02 from these minerais. By contrast, Ti­

oxides, such as rutile and ilmenite, are hard, dense, and resistant, thus can be easily 

concentrated by sedimentologic processes. Furthermore, these oxides are compatible with 

actual industrial pigment processes. Only two processes are used by the pigment industry: 

the sulfate and the chloride processes. The first one has been developed in the 1950s and 

is used for ilmenite with a relatively low-Ti02 content (37-54%), such as magmatic 

ilmenite and hemo-ilmenite. Actually, the sulfate process is less used by the pigment 

industry due to environmental considerations. lnstead, the pigment industry favors the 

less pol/uting one, the chloride process. However, this chloride pigment process reguires 

specifie mineralogy and a minimum of contaminating elements to be effective: only rutile 

(>95% Ti02) and enriched ilmenite (60-70% Ti02) are compatible (Force, 1991a; 

Stanaway, 1994). Therefore, the chemica1 composition of the feedstock has to be taken 

into account besides the hardness, density and stability of the source rock minerais. High 

Fe, Mg and other trace elements in magmatic ilmenite make it incompatible with the 

aclual chloride pigment process un1ess further removal of element occur during the 

formation of the deposits. 

Weathering 

At the source rock, different enrichment processes could occur transformlng non­

economic mineraIs into a pigment process compatible phase. Deep-weathering conditions 
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affecting the parent rock have usually two beneficial results: a) alter the titanium-bearing 

minerais into residual titaniurri oxides, generally anatase, b) destroy or dissolve the 

gangue minerais, thus residually enrich the source rock in Ti02. Hartman (1959), Force 

(1976a), Edou-Minko, (1995) indicated that a saprolitized or lateritized source rock can 

be enriched in Ti02 by a factor of two to four. Although this enrichment factor can be 

very high, aga in it is the mineralogy that is the most important. During weathering, 

titanium is found as residual Ti02-phase, generally porous grains or very fine aggregates 

of anatase which cannot be transported on a long distance and not be destroyed. For 

instance, in lateritic or bauxi tic profile Ti-bearing silicates are altered into clay and 

titanium forms fine oxide aggregates generally anatase, a rutile polymorph (Hartman, 

1959; Force, 1976a; Force, 1976b; Herz, 1976; Butt, 1985; Narayanaswamy et al., 1987; 

Force, 1991 a). Titaniferous magnetite is also altered into anatase under such conditions. 

llmenite is residually enriched into Ti02 by leaching of elements such as Fe, Mg, Ca 

(Grey and Reid, 1975; Dimanche et Bartholomé, 1976; Anand and Gilkes, 1984; Mücke 

and Chaudhuri, 1991; Schroeder et al., 2002). Rutile is probably the most stable titanium 

mineraI under weathering conditions, unJess its Nb content is too high (Force, 1976a). 

Nevertheless, weathering of ilmenite and rutile has a positive effect by leaching 

undesirable elements and still preserves the original hardness and density of these 

minerais. However, weathering alone could not lead to generation of a titanium source 

rock, unless the rock was previously enriched in rutile or ilmenite. 

Hydrothermal processes 

The source rock can also be formed or enriched by hydrothermal processes. 

Alteration zones around porphyry copper usually contain rutile issued from the alteration 

of ilmenite originally present in the rocks (Czamanske et al., 1981, Force, 1984). Such 

rutile crystallization from hydrothermalized ilmenite has also been recognized in 

alteration zones of orogenic goId deposits and around metamorphosed massive sulfides 

(Nesbitt and Kelly, 1980; Eilu et al., 1999). However, such occurrences of rutile are only 

present locally on a small-scale area and cannot form a major rutile source rock (Force, 

1980). 
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Metamorphism 

Metamorphism can also affect the parent rocks and haseithcr deleterious or 

beneficial effects on titaniferous minerais. Under low-grade metamorphic conditions, 

rutile and ilmenite, if present, are destabilized and titanium is incorporated into silicates 

(Force, 1976a; Goldsmith and Force, 1978). Under specifie conditions rutile can be 

preserved, such as in calcium-poor, aluminium-ric,h rocks, usually pelite. Again, such 

occurrence represents small area. By contrast, high-grade metamorphism (granulite and 

eclogite) transformed Ti-bearing silicates into oxides, cithcr rutile or ilmenitc (Force, 

1976a; 1980; 1991 a; Goldsmith and Force, 1978; Stanaway, 1996; 2005). According to 

these authors, high-grade metamorphism is the most efficient rutile-generating process. 

Therefore, granulite facies rocks constituted the optimal source rock for rutile placers. 

Moreover, these authors pointed out that such highly metamorphosed rocks usually 

formed crystalline basement of several square kilometers and provided an extensive 

source rocks for rutile. 

Beneficiation processes affecting the parent rock are limited to chemical changes, 

such as weathering, hydrothermal alteration and metamorphism, transforming principally 

the mineralogy. Weathering and hydrothermal processes can participate in the enrichment 

process, however, the parent rocks must already contain a specifie mineralogy, such as 

rutile or ilmenite, otherwise beneficiation cannot occur. Therefore, no weathering or 

hydrothcrmal processes can generate potential source rocks. High-grade metamorphism 

seems to be the only rutile-generating process which can form large source rocks, 

regardless of the nature of the parent rocks. 



9 

Erosion-transport-deposition 

Mechanical enrichment 

Without an erosion-transport-deposition cycle, no placer deposits can be fonned. 

Complex sedimentologic processes result in concentration of the valuable minerais from 

a source rock into the sedimentological record. Mechanical enrichment is predominant 

over chemical enrichment during transport and reworking. Thus, the density, particle size 

and hardness of a grain are the most significant properties involved during a placer 

fonnation. The harder a minerai is, the better it will be preserved and remains coarse­

grained during transport. 

Different agents, such as waves, running water and wind are responsible for the 

mechanical concentration of heavy minerais. Running water is probably the major agent 

involved in placer fonnation ( Slingerland and Smith, 1986). At this stage, titanium must 

reside as oxide, either rutile or ilmenite, to be liable to concentration processes, hence the 

importance of the source rock (Force, 1991a; Stanaway, 1996). Settling, entrainment, 

differential transport and shearing are the principal mechanisms involved during the 

formation of a water-laid placer, where partie le size and density intervene (Stapor, 1973; 

Komar and Wang, 1984; Slingerland and Smith, 1986; Stanaway, 1992). Concentration 

of heavy minerais usually result in a simultaneous combination of these mechanisms. 

These processes must result in a sorting of heavy mineraIs from the non-economic 

minerais to form a placer. 

The density is the most important property during settling deposition. Based on 

this principle, coarse light grains are in equilibrium with finer heavy grains during 

deposition (Slingerland and Smith, 1986; Force, 1991 b). At this point, no enrichment 

occurs, apart the removal of small light grains and floating particle such as micas and 

clay. 
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Entrainment of a gram occurs during reworking of the deposited gram and 

depends more on the grain size, whatever its density is. According to this princip le, on a 

layer, coarse grains are preferentially removed by transport agents rather than finer ones, 

due to greater contact area (Slingerland and Smith, 1986; Force, 1991 b). Waves, for 

example, are probably the best natural concentrator of heavy minerais by entrainment, 

created by wash and back-wash movements on a beach (Force, 1991 a). The combination 

of the settling deposition and entrainment thus results in heavy mineral-rich layers. 

The transport sorting by flowing water results in a segregation of coarse particles 

from finer ones during transport. The large particles move faster than finer ones with 

increasing ve10city of the flowing water. Thus heavy particles can be concentrated by a 

combination of the above-mentioned hydraulic equivalences (settling and entrainment; 

Slingerland and Smith, 1986; Force, 1991 b). 

At the depositional site, heavy minera1s can also be concentrated by 1ater 

mechanical reworking such as shearing, winnowing, shadowing, overpassing, armoring, 

trapping and hiding (Cheel, 1984; Slingerland and Smith, 1986, Force, 1991 b; Stanaway, 

1992). For instance, shearing of grains by gravity or fluid forces result in a migration of 

denser (or larger) particle upward, toward the surface plan (lnman et al., 1966; Komar 

and Wang, 1984; SlingerJand and Smith, 1986). Although concentration of heavy 

minerais occurs under many environments, the shoreline deposits constitute the great 

majority of titanium deposits where ail the hydraulic processes are efficient to form 

economic placers. 

Chemical enrichment 

For many titaniferous placers, chemical enrichment at the depositional site is 

probably the most important factor for the enrichment of a placer. lt is even more 

significant because i1menite is usually the most abundant titaniferous oxide present in 

heavy minerai placers and thus requires fu11her chemical leaching to be compatible with 

the chloride pigment process. Therefore, the actua1 deposits must be-or were at a certain 
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time-under sub-tropicaJ to tropical deep-weathering conditions during or after their 

formation. It is only under such tropical wcathering that humic acids can leach efficiently 

elements from ilmenite, especially iron and magnesium. (Bailey et al., 1956; 

Karkhanavala, 1959; Lynd, 1960; Welch, 1964; Temple, 1966; Dimanche, 1972; Grey 

and Reid, 1975; Dimanche and Bartholomé, 1976; Puffer, and Cousminer, 1982; Darby, 

1984; Force, 1991; Mücke and Chaudhuri, 1991). A single ilmenite grain containing 

about 35% Ti02 can be up-graded to 65%-70% Ti02 by such chemical leaching. The 

ilmenite generally altered to leucoxene or anatase via a pseudorutile intermediate stage 

(Teufer and Temple, 1966; Grey, and Reid, 1975; Dimanche and Bartholomé, 1976; 

Mücke and Chaudhuri, 1991). Detrital rutile deposits do not require such chemical 

enrichment to be economic. For instance, the proportion of Ti02 in sorne economic 

Australian rutile deposits is well-below the crustal average. With a source supplying 

ilmenite instead of rutile, the geographical or paleogeographical position is a limiting 

factor in regards to exploration. For instance, large placers of ilmenite occur at Port 

Leyden (N.Y.), Pointe-Taillon (Qc) and Natashquan (Qc) but are actually non-economic 

because of their high-latitude position. However, it does not mean that cxploration for 

titaniferous placers should be concentrated under tropical zone. Failing these conditions, 

other enrichment processes could occur somewhere between the depositional site and the 

source rock, called intermediate sedimentary hosts by Force (1991a). 

Intermediate sedimentary hasts 

An intermediate sedimentary host could form a titaniferous deposit in itself or be 

an interrnediate source rock for placer by further reworking. Enrichment processes 

occurring on such hosts can be considerable. Besides mechanical and chemical 

enrichment processes already mentioned in previous sections, other transformations can 

radically change the economic viability of a placer. Diagenesis, hydrothermal alteration 

and metamorphism can significantly change the mineraIogy and thus beneficiate or make 

possible the further formation of a placer. The Sutton rutile deposit is a key example of 

such intermediate host where low-grade metamorphic processes changed uneconomlc 

ilmenite into a rutile-bearing potential source rock for local placers. 
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Example of an enriched intermediate sedimentary host 

Ti02 (rutile and anatase) concentrations are observed in metamorphosed and 

deformed Cambrian sandstone unit, the Pinnacle Formation, near the town of Sutton, in 

the Quebec Appalachians (Fig. 1.1). The Pinnacle Formation is part of the Oak Hill 

Group, betwcen basalts at the base (Tibbit Hill Formation) and sandy dolomitic unit at 

the top (White Brook; Clark, 1936; Dowling, 1988; Colpron, 1992; Colpron et al., 1994). 

The wholc sequence underwent two major metamorphic events that reached greenschist 

facies. The fïrst one occur at 469-461 Ma during the Taconian Orogeny. The second one 

occur during a backthrusting event at 431-411 Ma (Castonguay et al., 2001). Titanium 

oxide-rich horizons (altered ilmenite, pseudorutile, anatase and rutile) have been 

recognized over a 20 km2 area near Sutton. The rutile-hosted stratigraphical unit is cross­

cut to the East by a backthrust, the Brome Fault (Colpron, 1992). The original parent 

rocks for the Sutton heavy mineraI concentrations are well-defïned: it is the adjacent 

Grenvillian high-metamorphic terrains and their titaniferous anorthositic complexes that 

intruded them (Colpron, 1992; Marquis and Kumarapeli, 1993). This Precambrian 

basement formed one of the major source rocks for titanium oxide placers in the world 

(SLanaway, 1996). However, the predominant titanium minerai issued from these 

Precambrian source rock is ilmenite (FeTi03), a less valuable minerai than rutile. At this 

point, the only economic placers issued from these rocks are situated in sub-tropical and 

tropical zones (Florida, Georgia) where deep-weathering conditions can enrich ilmenite. 

To be economically viable, these ilmenite grains must undergo other chemical 

benefïciations at the source, at the depositional site or somewhere between the two, such 

as in an intermediate sedimentary host. 
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Figure 1.1 Geographical position of the Sutton area (star) and its position relative to 
the outcropping Grenville Province. 
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Description 

Hcavy minerais are concentrated into millimetric to centimetric laminations 

disseminated in quartzitic sandstones and may be observable in a 5 to 80 meter-thick 

sequence. Locally, the heavy minerais are present in thin semimassive black beds (up to 

60% heavy mineraIs) reaching only a thickness of 2 to 5 m. Figure J.2 shows the rutile 

distribution (% vol.) as either disseminated laminations (triangle) or as semimassive 

black beds (circle). The rutile is fine-grained (50-200 IJ.m) and forms 1 to 7% of the 

minerai assemblages in the 5-80 m-thick disseminated laminations and forms lOto 30% 

in the 2-5 m-thick semimassive beds. The rutile is present either as euhedral crystals or as 

detrital ilmenite pseudomorphs. 

Enrichment processes 

Recent work on Sutton paleoplacers revealed that the rutile is a post-depositional 

product derived from a two-stage alteration of detrital hemo-ilmenite (Hebert and 

Gauthier, in press). Figure 1.3 shows the complete evolution of the Sutton paleoplacer 

mineralogy from the source rock to the metamorphosed sediments. The original hemo­

ilmenite has been altered after deposition before and during metamorphism. Pseudorutile 

and nano-aggregates of anatase were the products resulting from this alteration. In a 

second part, retrograde metamorphic fluids transformed these nano-aggregates of anatase 

into coarse-grain rutile, thus beneficiate the original ilmenite in terms of mineralogy 

(rutile) and physical properties (no-longer a porous and fragile aggregate). Such low­

grade metamorphic transformation of nano-anatase into rutile has never been reported 

elsewhere in titanium deposits. 
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Economie applications 

Many authors (Grey and Reid, 1975; Dimanche and Bartholomé, 1976; Force, 

1991a; Mücke and Chaudhuri, 1991) pointed out the importance ofweathering on the Fe­

Ti heavy mineraIs at the depositional site. Weathering processes allow chemical leaching 

of clements such as iron and magnesium from the titaniferous mineraIs and thus increase 

the Ti02 proportion of the oxide grains. However, chemical alteration of ilmenite grains 

commonly results in a micro-aggregate of titanium oxides known as leucoxene, which 

could not survive transport on a long distance and keep its original coarseness (Grey and 

Reid, 1975; Force, 1991). Unless other processes are involved, pre-depositional 

weathering of ilmenite, either directly at the source rock or intermediate sedimentary 

host, has a deleterious effect because it breaks the original properties of ilmenite (i.e. 

density, hardness) that can facilitate concentration by sedimentologic processes. Under 

special circumstances, metamorphism affecting such intermediate sedimentary hosts may 

recryslallize these porous leucoxene grains into single coarse-grained rutile, thus can be 

preserved and be concentrated in placers. Until now, no metamorphic rutile-generating 

processes were known to occur under greenschist facies and low-grade metamorphic 

rocks were therefore systematically rejected as rutile-bearing source rocks. However, our 

new observations at Sutton open a whole new range of potential sources for rutile via an 

intermediate sedimentary host within low-metamorphic terrains. Furthermore, placers 

formed from such intermediate sedimentary hosts did not require further tropical 

weathering because the enrichment had already occurred. Thus, potential rutile placers 

could be expected under higher latitude than the actual sub-tropical and tropical 

exploration targets. 
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Abstract 

Unconventional rutile deposits occur in heavy minerai paleoplacers of the Pinnacle 

Formation in the Humber Zone of the Quebec Appalachians. Detrital hemo-ilmenite 

represents 65% of the heavy minerai assemblage and is the main titanium mineraI. 

Detrital nltile is also present in traee amounts. Post-depositional and metamorphie 

alteration processes inereased the titanium content of the hemo-ilmenite grains by 

Ieaehing elements, partieularly Fe. New mineraIs ereated by these proeesses include 

pseudorutile, anatase (a Ti02 polymorph), and neorutile. Early metamorphie magnetite 

enclosed detrital grains and preserved evidenee of premetamorphie weathering or 

diagenetie processes by isolating the grains from metamorphic fluids, thus preventing 

further leaching. Detrital grains that were not protected by this magnetite were 

metamorphically leached to the purer Ti02 minerai phase of anatase. Grains of anatase 

locally recrystallized to neorutile during a late orogenie back thrusting event in the 

Silurian. This is supported by ûl80 water in equilibrium with metamorphic magnetite and 

by the fact that neorutile is limited to the eastern part of the synformal keel near the back 

thrust fault and is rarely observed further west, where anatase is predominant. Rutile 

formed under greensehist metamorphie conditions from primary hemo-ilmenite detrital 

grains via intermediate pseudorutile and anatase phases. This is the first known report of 

titanium minerai enrichment occurring under low pressure and temperature metamorphic 

conditions. Our results could have significant implications for minerai exploration 

because they demonstrate that paleoplacer source regions are not restricted to eclogite 

and granulite facies terrains. 
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Introduction 

Previous studies have shown that the optimum source rocks for titaniferous 

placers are limitcd to rocks that underwent high pressure and temperature metamorphism, 

such as eclogite and granulite facies (Goldsmith and Force, 1978; Force, 1991; Stanaway, 

1996). Above the sillimanitc zone, titanium is released from silicate phases and 

recrystallizcd as oxides, particularly rutile. Below the sillimanite zone, titanium 

preferentially combines with calcium to form titanite, or with uranium to form brannerite. 

Rutile is only preserved under specifie conditions, such as in calcium-poor host rocks 

(Goldsmith and Force, 1978; Force 1991). The Cambrian metasediments in the Sutton 

region of the Quebec Appalachians have unusually high concentrations of rutile and 

anatase for rocks which contain a greenschist minerai assemblage. In this area, the Ti­

bearing strata contain more than 20% Ti02, are 5 to 30 m thick, and crop out over an area 

of20 km2
. 

Exceptional sedimentary processes and post-depositional weathering were 

initially invoked to explain the abundance of rutile in these greenschist facies 

metasediments (Colpron et al., 1994; Gauthier et al., 1994). The present study re­

evaluates this hypothesis by examining the role of metamorphism on the Fe-Ti-bearing 

oxides. We show that greenschist facies metamorphism played a major raie in the Ti­

enrichment of detrital and paleoweathered hemo-ilmenite grains as a result of 

recrystallization to coarse neorutile grains. To our knowledge, this is the first report of a 

rutile-generating process at low pressure and temperature. This finding has implications 

for recognizing potential source regions for titanium minerai placer deposits. 

Supergene enrichment of ilmenite grains by iron leaching is weil known in 

unconsolidated Quaternary and Tertiary placers (Bailey et al., 1956; Karkhanavala, 1959; 

Lynd, 1960; Welch, 1964; Temple, 1966; Dimanche, 1972; Grey and Reid, 1975; 

Dimanche and Bartholomé, 1976; Puffer, and Cousminer, 1982; Darby, 1984; Force, 

1991; Mücke and Chaudhuri, 1991). However, very few papers describe the enrichment 

of i1menite in consolidated placers (Faure, 1978; Coipel and Dimanche, 1981; Morad and 

Aldahan, 1986) or studies of metamorphosed placers (Muresan, 2002). Although they can 

represent considerable resources of titanium, such as american Cretaceous shoreline 
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dcposits, no specifie criteria have been developed to evaJuate the effects of 

metamorphism on titanium oxide-rich metasediments (Force, 1991; 2000; 2001, 

Stanaway, 2005). The Sutton paleoplacers have a range of metamorphic titanium oxide 

phases, presenting an ideal case study of the effects of metamorphism on hemo-ilmenite 

grams. 
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GeoJogicat Setting 

The rutile-rich horizons at Sutton are hosted by sedimentary rocks of the 

Cambrian Lower Oak Hill Group, located in the Humber Zone of the Quebec 

Appalachians, south of the Precambrian GrenviJlian basement (Fig. 2.1). Colpron (1992), 

and Marquis and Kumarapeli (J 993) proposed that the source rocks for the Sutton 

deposits were the highly deformed and metamorphosed Grenvillian gneisses and the 

anorthosite suites that intruded them. They proposed that the lapetan Ottawa River 

drained these titanium oxide-rich source regions during Cambrian time to form heavy 

minerai placers in a rift-associated basin that comprises the Oak Hill Group (Marquis and 

Kumarapeli, 1993). The heavy mineraI paleoplaeers examined during this study are 

hosted by the Pinnacle Formation, a IS0-m thick sandy unit within the Oak Hill Group 

(Fig. 2.2; Clark, 1936; Dowling, 1988; Colpron, 1992; Colpron et al., 1994). The 

Pinnacle Formation is overlain by a dolomitic marble of the White Brook Formation and 

underlain by the alkaline metavolcanic rocks of the Tibbit Hill Formation. The Cali Mill 

phyllite member, defined by Charbonneau (1980) as a distinct unit within the Pinnacle 

Formation, is locally present between the Pinnacle metasandstones and the Tibbit Hill 

metabasalts. The Oak Hill Group was deformed and metamorphosed to a greensehist 

facies minerai assemblage during the Taconian Orogeny (469-461 Ma) and was subjected 

to baekthrusting in the Silurian (431-411 Ma; Castonguay et al., 2001). In the Sutton 

region, the Pinnacle Formation is preserved within a S x 10 km synformal keel and is 

bounded to the east by the Brome back thrust fault that trends NNE and dips 30° to the 

NNW. 
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Figure 2.1	 Geological map of the Sutton area and its position relative to the Grenville 
Province (after Colpron, 1992, and Colpron et al., 1994). The inset shows 
the paleoeguator position of the region during Cambrian time (Irving, 
1981). 
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Dowling (1988) subdivided the Pinnacle metasandstones into Lower and Upper 

units. In the present study, the Pinnacle is instead divided into three units: lower, middle 

and upper (Fig. 2.2). This new subdivision is based on matrix compositions and the 

relative abundance of heavy minerais. The lower unit, a medium-grained quartzite with a 

muscovite-rich matrix, is 3 to 20 m thick near the Brome Fault and thickens westward up 

to 70 m. The middle unit is a cross-Iaminated or semimassive, black to dark green, 7 to 

80 m-thick sandstone with abundant heavy minerais in a chlorite-rich matrix. The upper 

unit of thc Pinnacle Formation, a cross-Iaminated muscovitic metawacke with millimeter­

scale layers of heavy minerais, is lOto 55 m thick and is only preserved in the western 

part of the synformal keel. Dolomite locally comprises 5 to 15% of the rock. 

The middle unit is the main focus of this study. The heavy minerais locally comprise up 

to 60 vol.% of the rock and are concentrated in distinctive millimeter- to centimeter-scale 

layers that are cross-bedded at the meter scale. Several types of fine-graincd (200 to 250 

!-Lm) Fe-Ti minerai oxides form the heavy minerai assemblage: anatase (20%), rutile 

(18%), ilmeno-hematite (hematite with exsolutions of ilmenite; 15%), pseudorutile 

(12%), hemo-ilmenite (ilmenite with exsolutions of hematite; 5%) and strongly 

martitized titaniferous magnetite (3%; Fig. 2.3). Titanium-free magnetite is closely 

associated with the heavy minerai laminations and forms 10% of the assemblage. It is a 

characteristic of the middle unit and differs from the detrital titaniferous magnetite grains 

because of its coarser grain sizes (0.5 to 2 mm) and euhedral nature (Fig. 2.4A). Chlorite 

occurs in pressure shadows around Ti-free magnetite, indicating that magnetite 

crystallization occurred at the onset of metamorphism during the Taconian Orogeny 

(Charbonneau, 1981). Zircon is also present and accounts for 10 vol.% of the heavy 

minerai fraction. The grains are weil preserved, with only a few heavily fractured grains. 

Detrital tourmal inc accounts for about 5% of the heavy minerai fraction. Overgrowths of 

metamorphic tourmaline surround detrital tourmaline, a process that can also be related to 

the Taconian Orogeny (Fig. 2.4B; Rickard, 1964). Other heavy mineraIs occur in minor 

proportions, notably apatite and detrital rutile. 
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Figure 2.2	 Schematic stratigraphie column of the Pinnacle Formation and its four 
units (modified from Dowiing, 1988) showing the heavy minerai 
concentrations of the middle Pinnacle unit. 
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Heavy minerai Pre-weathered 
Heavy mineraI fraction detrita 1fraction 

% vol observed % vol 

Rutile 18 

Anatase 20 

Pseudorutife 12 >-- Hemo-ilmenite 

Hemo-ilmenite 5 65 

Ti-free Magnetite 10 ./ 

Iimeno-hematite 15 15 

Zircon 10 10 

Tourmaline 5 5 

Titaniferous Magnetite 3 3 

Other 2 2 

Figure 2.3	 Distribution of the heavy mineraIs in the prernetarnorphic and 
rnetarnorphic (italics) assemblages. The central column represents the 
heavy mineraI percentages observed in the samples. The right column 
represents the ioterpreted pre-weathered (and premetamorphic) 
equivalence of sorne heavy mineraIs. 
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Figure 2.4	 Photomicrographs of metamorphic minerai assemblages observed under 
plane polarized transmitted light. A) Ti-free magnetite, showing chlorite in 
its pressure shadow. Chi = chlorite, mag = magnetite, qtz = quartz. B) 
Detrital tourmaline grains with metamorphic overgrowths of tourmaline. 
Met-tur = metamorphic tourmaline, qtz = quartz, tur = tourmaline. 
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MineraJogy of Fe-Ti Oxides 

The titanium oxide minerais in the Sutton rocks compnse minerai phases that 

correspond to four different stages of transformation: hemo-ilmenite with a pitted texture 

(stage 1), pseudorutile (stage 2), nanocrystalline anatase (stage 3), and neorutile (stage 4). 

A petrographie study of more than 3000 grains was carried out to determine whether the 

crystallization of rutile oeculTed during post-depositional weathering or during 

metamorphism. Pitted hemo-ilmenite from stage 1 exhibit low porosity and relict 

hematite exsolution patterns (Fig. 2.5A). Grains of stage 2 pseudorutile display a more 

homogeneous texture with abundant voids that are interpreted to be a product of leaching 

of iron from of hemo-ilmenite (Fig. 2.5B). Pseudorutile, also known as arizonite, was 

defined as a distinct minerai by Overholt (1950), Teufer and Temple (1966), Grey and 

Reid (1975), and Mücke and Chaudhuri (199 J). Nanocrystalline anatase from stage 3 

consists of nearly pure Ti02 and is interpreted to be a residual phase. The original hemo­

ilmenite exsolution pattern is still recognizable and gives the anatase grains their highly 

porous mesh-like texture (Fig. 2.5C and D). During stage 4, nanocrystalline anatase was 

completely recrystallized into coarse-grained rutile, which destroyed any associated voids 

and porosity (Fig. 2.5E and F). Some grains show features that are intermediate between 

stage 3 and stage 4, where the nucleation and growth of rutile occulTed at the interface 

between anatase nanoparticules (Fig. 2.6). If ail four stages represent different degrees of 

transformation of original hemo-ilmenite grains, it is possible to infer that the proportion 

of detrital hemo-ilmenite in the original (pre-consolidation) heavy minerai fraction was 

65 vol.% (Fig. 2.3). The compositions ofthese Fe-Ti oxides were analyzed using a JEOL 

JXA-8900 electron microprobe operated at 15kV, with a specimen current of 20nA and a 

beam diameter of 10 ~Lm. The range of minerai compositions is interpreted to reflect 

signifieant iron leaching, upgrading the proportion of Ti02 from 37 wt.% up to 99 wt.% 

(Fig. 2.7). 
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Figure 2.5	 Photomicrographs of hemo-ilmenite grains showing features that are 
interpreted to represent different stages of iron leaching (observed under 
oil in natural reflected light). A) Stage l pitted hemo-ilmenite grain. Note 
that the hematite lamellae are not affected. Hem = hematite, Pit-ilm = 

pitted ilmenite. B) Stage 2 pseudorutile grain showing a more 
homogeneous texture. Voids are preferentially developed along hematite 
exsolution planes. Ps = pseudorutilc, v = void. C) Stage 3 mesh-textured 
grain of anatase showing well-developed porosity. Ant = anatase. D) Stage 
3 partially mesh-textured anatase grain with residual pitted ilmenite 
showing an exsolution pattern parallel to the nanocrystalline texture of the 
anatase grain (indicated by white /ines). E) Stage 4 neorutile crystals 
developed [rom nanocrystalline anatase. Rut = rutile. F) Single grain of 
Stage 4 coarse-grained neorutile. 
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Figure 2.6 Photomicrographs of rutile that nucleated and grew from the 
nanocrystalline anatase interfaces (observed under oil in natural reflected 

light). Anatase shows Iighter internaI reflections than rutile. Rutile has a 
more homogeneous aspect. Ant = anatase, rut = rutile. 
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Some of the leached detrital hemo-ilmenite graInS were trapped as inclusions 

during the crystalJization of metamorphic magnetite, which formed widely during the 

Taconian orogeny (Charbonneau, 1981). During its crystallization, the metamorphic 

magnetite isolated the trapped grains and preserved them from further leaching by 

metamorphic fluids (Fig. 2.8A and B). Ali other Fe-Ti oxide grains appear to have been 

subjected to iron lcaching by metamorphic fluids. This is illustrated by the fact that sorne 

partially exposed inclusions in magnetite show a different degree of leaching than the 

fully enclosed grains (Fig. 2.8C). Preserved exsolutions of hematite in trapped grains 

show that no metamorphic reaction took place between magnetite and their inclusions. 

Thus, trapped grains record the degree of titanium enrichment that occurs before the 

backthrusting-associated metamorphism. Pitted hemo-ilmenite (stage 1), pseudorutile 

(stage 2) and a minor proportion of anatase (stage 3) were ail found as inclusions in the 

metamorphic magnetite; however, no rutile was found (Fig. 2.9A). About 71% of the free 

grains comprise either anatase (stage 3) or rutile (stage 4; Fig. 2.9B). The crystallization 

of rutile must have occurred during the metamorphism associated with the last part of the 

Taconian orogeny and/or during the back thrusting event during the Silurian, because no 

other thermal event is recognized in the area. 

The distribution of rutile and anatase with respect to the Brome Fault, a backthrust 

of Silurian age suggests that the crystallization of rutile after anatase was related to this 

late-stage fault. Metamorphic neorutile grains are restricted to the eastem part of the 

synformal keel, near the Brome Fault, whereas the majority of the titanium oxides in the 

western part are anatase (Fig. 2.10). Therc is no other mineralogical indication of 

different metamorphic conditions around the Brome Fauit. However, the high density of 

quartz veins and veinlets near the fault suggests extensive fluid flow during the Silurian 

back thrust event (A. Tremblay, pers. commun., 2006). Foeussing of such fluids by the 

Brome Fault could have been responsible for the anatase-to-rutile transition, as rutile is 

most abundant in the vicinity of the Brome Fault. 
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Figure 2.7	 Diagram showing the progressive enrichment in Ti02 of the Fe-Ti oxides 
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Figure 2.8	 Photomicrographs of a hemo-ilmenite grains trapped by metamorphic 
magnetite (observed under oil in natural reflected light). A) The apparent 
leaching of the trapped grain is characteristic of pitted hemo-ilmenite of 
stage 1. Note that the hematite lamellae are not affected, which is typical 
of this stage of leaching. Hem = hematite, mag = magnetite, pit-ilm = 
pitted ilmenite. B) Trapped pseudorutile grain corresponding to Stage 2. Ps 
= pseudorutile. C) Partially trapped grain. The exposed part shows a 
deeper leaching level and comprises nanocrystalline anatase of Stage 3. 
The trapped part shows a different leaching level, corresponding to pitted 
hemo-ilmenite of Stage 1. Note that the exsolution lamellae of hematite 
are still preserved in the trapped part. Ant = anatase. 
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Figure 2.9 Histogram showing the percentage of different Fe-Ti oxide grains 
according to their stage of alteration (pitted hemo-ilmenite, pseudorutile, 
anatase and rutile), based on a petrographie study performed on more than 
3,000 grains from across the region. A) Grains trapped in magnetite 
(n=367). B) Free grains (n=2,828). Note that trapped grains are dominantly 
pitted hemo-ilmenite or pseudorutile, whereas more than 70% offree 
grains are anatase or rutile. 
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Figure 2.10	 Geographical distribution and relative abundances of rutile and anatase 
from selected locations (squares). Rutile is dominant near the Brome Fault, 
but the proportion drops sharply to the west where anatase is more 
abundant. 
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Oxygen Isotopes 

Oxygen isotope analysis of the metamorphic magnetite was carried out to 

determine if the paleoplacer deposits could have been affected by fluid flow along the 

Brome Fault. Samples were taken along cross-sections perpendicular to the Brome Fault 

to test for any zonation in the isotopic composition of fluids that could explain the 

rutile/anatase distribution. Twenty-five samples were collected and crushed into a fine 

powder. Magnetite was isolated and dissolved in a bromine pentafluoride at 600°C. The 

oxygen produced was fixed to carbon via a carbon rod with a platine catalyzor. The COz 

was then analyzed by mass spectrometry where 018 0 was compared to the Vienna­

Standard Mean Ocean Water (V-SMOW). The isotopie composition of water in 

equilibrium with the magnetite was calculated using the magnetite-water fractionation 

factors of Cole et al. (2004) at 300°C and 400°C (cf. Trzcienski and Birkett, 1982; 

Castonguay and Tremblay, 2003). The calculated 018 0 value of water varies from 9.6%0 

to 16.5%0, consistent with metamorphic water (Hoefs, 2004; Fig. 2.11). Contour lines of 

o180waler shown in Figure 2.12 show a strong zonation away from the Brome Fault, 

confirming that the structure likely acted as a major conduit for Jate-stage metamorphic 

fluids. 
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Discussion 

Petrographie observations of the Sutton paleoplacers suggest that post­

depositional weathering leached iron from detrital hemo-ilmenite grains. Complete Fe­

leaching resulted in a pure-Ti02 phase, usually anatase, similar to that obscrved in 

tropical weathering conditions in which humic acids contribute to iron leaching (Grey, 

and Reid, 1975; Dimanche and Bartholomé, 1976; Mücke and Challdhuri, 1991). Sutton 

paleoplacers were subjected to sllch conditions during Cambrian time (Irving, 198 J; Fig. 

2.1), and post-depositional weathering wOllld be expected to have affected the detrital 

hemo-ilmenite grains. Hemo-ilmenite grains trapped in metamorphic magnetite reveal 

that this premetamorphic weathering mainly produced pseudorutile (stage 2) and lessel' 

anatase (stage 3), but not pure Ti02. Further leaching through the interaction with 

prograde metamorphic fluids, as demonstrated by the grains that were not encased by 

magnetite, may account for the local occunence of anatase. However, such weathering 

could not explain the locally abundant nltile, which usually occurs at high pressure and 

temperature (Shannon and Pask, 1964; Goldsmith and Force, 1978; Force 1991). At low 

pressures and temperatures the anatase to rutile transfonnation typically only occurs in 

the presence of cations (e.g. Mo, Cu or Fe) that may catalyze the reaction (lida and 

Ozaki, 1961; Heald and Weiss, 1972; Eppler, 1987). However, Gribb and 8anfield 

(1997), Penn and Banfield (1999), Zhang and Banfield (1999) have demonstrated 

experimentally that rutile can crystallize from nanocrystalline anatase, similar to that 

found in the Sutton deposits, under hydrothennal conditions. The distribution of rutile 

suggests that its crystallization was related to fluid flow along the Silurian backthrust 

fault. To our knowledge this is the first time that a transformation of anatase to rutile has 

been reported in low pressure and temperature metamorphic rocks. However, it is evident 

that the nanocrystalline anatase intermediate stage is an important preeursor to rutile 

formation. 
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Summary and Implications 

Consolidated placers in the Pinnacle Formation of Sutton contain hemo-ilmenite 

grains that have undergone pervasive post-depositional Fe-leaching. Crustal thickening in 

Middle Ordovician time caused regional metamorphism, which also participated in the 

leaching history of hemo-ilmenite grains, forming almost pure Ti02 mineraIs (anatase). 

Neorutile did not crystallize until backthrusting of the Brome Fault in the Silurian 

focussed hydrothermal fluids into the area. 

Both unconsolidated placers and magmatic ilmenite deposits account for more 

than 90% of current titanium world production (Force, 1991; TZ MineraIs International, 

2005). These conventional deposits are being depleted at a rapid rate due to rising global 

demand. The closing or opening of one or two deposits could radically change the 

supply-and-demand situation (TZ Minerais International, 2005; Heap, 2005). At the 

present time, only unconsolidated deposits provide economic resources of placer rutile. 

Leached hemo-ilmenite in the form of pseudorutile or anatase also occurs in these 

deposits as the product of iron leaching by humic acids. This type of deposit is limitcd to 

tropical and subtropical regions. This paper demonstrates that rutile may also occur in 

greenschist facies metamorphic rocks as a neoformed metamorphic mineraI. New sources 

of rutile can thus be developed in low pressure and temperature metamorphic terrains. ln 

the Sutton environment, metamorphic fluids driven by backthrust faulting are interpreted 

to have caused hypogene enrichment when weathered hemo-ilmenite grains recrystallized 

to neorutile. 
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Abstract 

A metamorphic zonation is observed around semimassive fe-Ti oxide-rich paleoplacer 

beds of Cambrian age in the southeastern Quebec Appalachians. Migration of elements 

from the oxide zone into the surrounding sandstone host rocks during regional 

metamorphism created a distinctive mineralogical assemblage that can be used as an 

exploration tool for finding high-grade titanium deposits or buried oxide zones. The 

alteration of detrital ilmenite to pseudorutile was responsible for this minerai zonation. 

Iron leached during the breakdown of the ilmenite was both recrystallized as an oxide 

phase and incorporated into silicate minerais in the alteration halos. The oxidation of 

ferrous iron to ferric iron in the ilmenite during the transformation lowered /02 values 

within and around the titaniferous oxide zones. The ilmenite-rich zone thus acted as an 

oxygen trap. During the ilmenite-pseudorutile reaction, approximately two thirds of 

i1menite's iron was bound into the pseudorutile structure, while the remainder migrated 

outward as ferrous iron. The resulting low /02 conditions allowed further leaching of iron 

from pseudorutile to form anatase-a purer titanium oxide mineraI. The pseudorutile­

anatase transformation liberated oxygen and the reaction thus buffered redox conditions 

in the system. 
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Introduction 

Many researchers have studied the interactions between massive sulfide orebodies 

and their host rocks during regional metamorphism (e.g., Ducktown deposits of 

Tennessee, USA; Nesbitt and Kelly, 1980). In many of these cases, variations in/02 and 

/S2 create multi-meter alteration halos which zoned the orebody surrounding rocks. 

Consequently, minerai changes have been used to develop exploration tools that can 

identify hidden massive sulfide deposits. Few studies, however, have examined the 

interactions that occur between oxide-rich horizons and their host rocks during regional 

metamorphism (Southwick, 1968). Metamorphic halos around semimassive titanium 

oxide-rich beds in the Sutton region of southem Quebec provide a suitable candidate for 

investigating such interactions. This paper evaluates /02 changes and iron transfer 

between Ti-rich oxide zones and host rocks during metamorphism of the Sutton 

paleoplacers as weil as their effect on mineralogy. Changes in/02 conditions affected the 

stabjjjty of specifie minerais in the host rocks, a feature that can be exploited as an 

exploration too!. Another purpose of this study is to demonstrate that the alteration of 

ilmenite to pseudorutile produces reducing conditions that enhance the beneficiation of 

Fe-Ti-oxides. 
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Geological Setting 

The Sulton reglûn is located in the Humber zone of the Quebec Appalachians 

(Fig. 3.1). Rocks of the study area consist of volcano-sedimentary strata of the Cambrian 

Oak Hill Group. The basal sequence comprises alkaline basaltic lavas of the Tibbit Hill 

Formation, which are overlain by a 150-m-thick metasandstone unit of terrigenous origin 

known as the Pinnacle Formation (Clark, 1936; Dowling, 1988; Colpron, 1992; Colpron 

et aL, J994). A \- to 5-m-thick phyllite locally present al the base of the Pinnacle 

Formation is designated the Cali Mill Member (Charbonneau, 1980). The dolomitic 

White Brook Formation stratigraphically overlies the Pinnacle Formation. Strata of the 

Oak Hill Group record a rifting episode during the break up of the Laurentian craton and 

the initial opening of the lapetus Ocean. The lower 3 to 40 m of the Pinnacle Formation 

are characterized by titanium-rich heavy mineraI paleoplacers that form black centimeter­

scale laminations to semimassive beds. Although the Pinnacle Formation is extensive, 

having been mapped for hundred kilometers in aIl directions beyond the study area, the 

distribution of heavy minerai beds is restricted to a 5-km wide by 7-km long synclinal 

keel in the vicinity of Sutton Village. Colpron (1992), Marquis and Kumarapeli (1993) 

proposed that Pinnacle sandstones are pro-delta deposits that formed at the mouth of the 

lapetan Ottawa River, which drained the adjacent Grenville Province during Cambrian 

time. Anorthosite complexes in the Precambrian basement are the proposed sources for 

the ilmenite in the Sutton paleoplacers (Colpron, 1992). 

According to Colpron (1992) and Colpron et al. (1994), at least three 

deformational events-D 1, D2, and D3-affected the deposits. Large WNW-trending 

recumbent folds associated with DI deformation developed during the first part of the 

Taconian Orogeny in Ordovician time. D2 and D3 produced a NNE-trending schistosity 

that reflects a Silurian backthrusting event. Backthrust faults of D2-D3 age include the 

Brome Fault, which cuts the eastern part of the Oak Hill Group in that area (Fig. 3.1). 

Our recent work reveals that this back thrust was a main conduit for fluids that helped 

enrich the titanium grade of the deposits (Hebert and Gauthier, in press). 
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Prograde regional metamorphism reached greenschist facies and was 

accompanied by 0 l deformation during the Taconian orogeny from 469-461 Ma 

(Castonguay et al., 2001). The rocks were also affected by retrograde metamorphism 

during the 02-03 back thmsting event from 43t-4t9 Ma (Colpron, ]994; Castonguay et 

al., 2001). 

Geology of the oxide zone 

Oxide zones, as defined in this paper, are thosc portions of the Pinnacle Formation ln 

which heavy mineraIs are concentrated into black centimeter-scale laminations or 

semimassive fine-grained beds. The thickness of these heavy mineral-rich units varies 

from a few meters in the case of the semimassive concentrations, to 30 m for the 

laminations. The detrital heavy mineraI fraction typically accounts for 60% of these rocks 

by volume and consists of approximately 25% neorutile+anatase, 20% pseudomtile, 20% 

pitted ilmenite with hematite exsolutions, t5% hematite with ilmenite exsolutions, ]0% 

zircon, 5% titaniferous magnetite, and 3% tourmaline. Neorutile, anatase, and 

pseudorutite are derived from the metamorphic alteration of ilmenite (Hebert and 

Gauthier, in press). The propOltion of ilmenite in the original detrital heavy mineraI 

fraction was thus 65%, with the remainder consisting of ilmeno-hematite, ZIrcon, 

titaniferous magnetite, and tourmaline. Metamorphic euhedral crystals of Ti-free 

magnetite are present and account for up to 20% of the rock. The matrix consists almost 

exclusively of chlorite and accounts for approximately 20% of the rock. Thus, an 

assemblage of neorutiIe, Ti-free magnetite and chiorite constitutes the characteristic 

metamorphic assemblage in the titanium-rich semimassive beds (Fig. 3.2E). 
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Upper Oak Hill Group 

Lower Oak Hill Group 

o White Brook marble 

D Pinnacle quartzite 

• Cali Mill phyllite 

• Tibbit Hill metabasalt 

f Bedding strike, undiff. dip 

/ Schistosity strike and dip 

1 Back thrust fault 

o 1...- ?km 

Figure 3.1.	 Geological map of the Sutton area and its position relative to the Grenville 
Province (after Colpron, 1992, and Colpron et al., 1994). 
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Geology ofthe country rocks 

Medium-grained quartzites of the Pinnacle Formation are the country rocks of the 

paleoplacer deposits. The matrix (5 to lS vol%) consists mainly of muscovite (Fig. 3.2A). 

Metamorphic Ti-free hematite (2%) is present as fine-grained flaky crystals oriented 

parallel to the regional schistosity, and also occurs around detrital grains of ilmenite. No 

concentration of detrital heavy minerais is observed in the country rocks. 

Metamorphic zonation 

A metamorphic zonation of oxide and silicate minerais occurs around the 

semimassive titanium-rich beds of the oxide zone. Three zones-A (distal) to C 

(proximal)-have been distinguished based on the appearance or disappearance of 

minerais in the country rocks (Fig. 3.3). Each zone ranges from 1 to 15 \TI in thickness 

around the oxide zone, with the most distal zone (A) observed as far as 4S m away. 

Zone A has roughly the same overall composition as the adjacent country rocks; 

i.e., quartzite with a muscovite-rich matrix (Fig. 3.2B). The presence of millimeter-scale 

laminations mainly composed of detrital ilmenite is the only notable sedimentary 

difference compared to the country rocks, where heavy minerais are disseminated and 

uncommon. The metamorphic assemblage is characterized by the disappearance of 

hematite and the appearance of discrete magnetite (about 1%) as Ti-free euhedral crystals 

1 to 2 mm in diameter. 

The intermediate zone, Zone B, contains more millimeter-scale heavy minerai 

laminations than Zone A, but is otherwise similar with respect to primary features. 

Chlorite appears in the matrix (Fig. 3.2C), and is preferentially concentrated around fine 

laminations of heavy minerais. Chlorite and muscovite occur in roughly equal 

proportions. Metamorphic magnetite accounts for up to 5% of the rock. 
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Figure 3.2.	 Photomicrographs of the different zones observed under plane polarized 
transmitted light, except "A" under cross polarized light. A) Country rock; 
B) Zone A; C) Zone B; 0) Zone C; E) Oxide zone. Qtz = quartz, Ms = 
muscovite, Mag = magnetite, Chi = chlorite, Rt = rutile. 
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ln Zone C, adjacent to the ore zone, the following differences in pnmary 

depositional features are observed: quartz is less abundant, the matrix reaches 25 to 30% 

of the rock, and centimeter-scale heavy minerai laminations appear. ln this zone, 

magnetite is also very abundant (up to 10%) as disseminated millimeter-scale octahedra. 

The matrix is chloritic; muscovite is minor (Fig. 3.2D). Anatase and rutile occur as 

secondary minerais derived from intense alteration of detrital ilmenite via an intermcdiate 

stage involving pseudorutile, as observed in the oxide zone (Hebert and Gauthier, in 

press). 
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Analytical results 

Chlorite was analyzed for major elements usmg a JEOL JXA-8900 electron 

microprobe operated at the following analytical conditions: accelerating voltage of 15kV, 

specimen current of 20nA, and beam diameter of Sllm. Compositional variations are 

observed in chlorite from Zone B, where it first appears, to the oxide zone, where chlorite 

is most abundant. The total iron content of chlorite in the semimassive beds of the oxide 

zone is about 32 wt% FeO, which progressively decreases away from the oxide zone to a 

low of 18-20 wt% FeO in Zone B (Fig. 3.3). Higher proportions of magnesium 

compensate for the lower amounts of iron in chlorite from zones Band C. Magnetite 

follows the same iron zonation trend, being more abundant in the oxide zone (almost 20 

vol%) and decreasing outward in the host rocks to only 1 vol% in Zone A. 

Detrital tounnaline grains in the oxide zone exhibit distinct metamorphic 

overgrowths (Rickard, 1964). The dark blue color of the overgrowths suggests that they 

are Fe-rich compared to the yellow detrital cores (Fig. 3.4A), which is confirrned by X­

ray mapping of a tourmaline grain. (Fig. 3.4B). 
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Figure 3.3	 Diagram showing the mineralogical variations according to the different 
zones. The proportion of magnetite is indicated as percentage of volume. 
The weight percent of iron is indicated for chlorite. (20 sampIes) 
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Figure 3.4	 A) Photomicrograph of a detrital tourmaline grain with a metamorphic 
overgrowth of iron-rich tourmaline observed under plane polarized 
transmitted light. Tur: tourmaline; Fe-Tur: ferriferous tourmaline 
overgrowth. B) Iron mapping of a tourmaline grain using a JEO L JXA­
8900 microprobe, accelerating voltage of 15kV, specimen current of 
20nA. The scale for iron content is showing in the right inset. 
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Discussion 

Iron migration 

Oxygen fugacity variations in the Sutton deposits and iron migration at the meter 

scale were responsible for the observed mineralogical changes. Changes in the 

composition of chlorite and in the abundance of magnetite reveaJ that iron migrated from 

the oxide zone toward the host rock (Fig. 3.3). Iron-rich metamorphic overgrowths on 

detrital tourmaline grains also reflect the availability of iron during metamorphism (Fig. 

3.4). 

The leaching of hematite exsolutions in ilmenite grains was the main source of 

Iron. Formation of pseudorutile during the alteration of ilmenite also released iron 

according to the following reaction: 

(1) 

where the liberated ferrous iron is incorporated into chlorite or magnetite (Grey and Reid, 

1975; Dimanche and Bartholomé, 1976; Morad and Aldahan, 1986; Mücke and 

Chaudhuri, 1991). Although the alteration of about one third of the ilmenite grains pre­

dates metamorphism (Hebert and Gauthier, in press), any iron released by that process 

was probably still present in the rocks as cement and thus remained available during 

metamorphic processes (Force, 1991, 2000). The destabilization of ferromagnesian 

silicate minerais in the Sutton sandstones also provided iron along with a considerable 

amount of magnesium (Dowling, 1988). 

According to Desborough (1963), Morad and Aldahan (1987), iron leached from 

Fe-Ti oxides can be mobilized and form pyrite where sulfur is present, or can be 

incorporated into chlorite and oxides if sulfur is absent. In sorne Fe-Ti-rich sandstones, it 

has also been demonstrated that chlorite formed directly from feldspar or muscovite by 

the addition of Fe and Mg released from ilmenite and ferromagnesian silicates 

(Desborough, 1963; Morad and Aldahan, 1987). The enrichment of iron in chlorite and 
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the greater abundance of metamorphic magnetite near the oxide zone reflect the 

metamorphic transfer of iron from Fe-Ti oxides into silicates and iron oxides. 

Variations in/02 

The predominance of magnetite in the Fe-Ti oxide-rich beds at Sutton indicates 

that the rocks were metamorphosed under reducing conditions (Eugster, 1959; 

Thompson, 1972; Spcar, 1993). ln contrast, surrounding rocks are characterized by an 

oxidizing environment as shown by the presence of metamorphic hematite. The reducing 

environment is thus restricted to the semimassive beds and their metamorphic halos. 

Sorne mineraIs, such as graphite, are known to change redox conditions by consuming 

oxygen (Miyashiro, 1964), yet graphite is not present in the Pinnacle Formation, nor are 

there any horizons rich in organic matter that could explain such a spatially limited 

reducing environment. Therefore, the /02 variations observed from the oxide zone to the 

host rocks must be caused by another mineraI. Studies have demonstrated that Fe2 
+_ 

bearing minerais like ilmenite can produce reducing conditions during oxidation of their 

ferrous iron if they are present in sufficient quantity (Ohmoto and Goldhaber, 1997; 

Force et al., 2001), and that the alteration of ilmenite to pseudorutile consumes oxygen 

(Grey and Reid, 1975; Frost, 1991). It has also been demonstrated that low jà2 values are 

required for iron removal from pseudorutile (Gruner, 1959; Adams et al., 1974; Grey and 

Reid, 1975; Dimanche and Bartholomé, 1976; Frost, 1991). The fact that reducing 

conditions are restricted to the Sutton oxide zones and their metamorphic halos suggests 

that ilmenite was sufficiently abundant to act as an oxygen trap and create reducing 

conditions in the metamorphic fluids (see Equation 1). Liberated ferrous iron migrated 

outward, forrning a reducing halo in the surrounding rocks. This is also seen in sediment­

hosted uranium deposits where ilmenite in reducing environments is strongly altered and 

leached, but ilmenite in uranium-free oxidized rocks remains unaltered (Adams et al., 

1974; Reynolds and Goldhaber, 1978a, b; Spirakis, 1996). Any changes in /02 conditions 

in the Pinnacle sandstones, however, would have been rapidly buffered by the subsequent 

alteration of pseudorutile to anatase, which liberates oxygen. 
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Metamorphic oxidation of ilmenite thus created reducing conditions around the 

semimassive titanium-rieh beds, as revealed by the presence of metamorphic magnetite 

instead of hematite. The redueing conditions caused further alteration of Fe-Ti oxide 

grains to loeaIJy produce fine-grained anatase from the breakdown of ilmenite. Anatase is 

only present in the oxide zone and its adjacent alteration zone (Zone C). The presence of 

rutile is explained by the subsequent crystallization of anatasc, which appears to have 

only occurred in the eastern part of the study area near the Brome Fault where fault­

driven metamorphie fluids catalyzed the reaction (Hebert and Gauthier, in press). 
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Conclusions 

The Cambrian Pinnacle sand stones were metamorphosed under oxidizing 

conditions as demonstrated by the abllndance of accessory metamorphic hematitc. In 

contrast, reducing occurred where ilmenite-rich beds are present. The ilmenite-rich beds 

acted as oxygen traps when oxygen was consumed during the metamorphic 

transformation of ilmenite to pseudorutile. Breakdown of ilmenite released approximately 

one third of its iron content in the form of ferrolls iron that migrated into the host rocks to 

create a characteristic mineraI assemblage: Fe-rich chlorite, magnetite, and Fe-rich 

tourmaline. This assemblage can be used as an exploration tool for finding high-gradc 

titanium deposits or buried oxide zones. The remainder of the iron was conserved in the 

pseudorutile structure, until continued metamorphic alteration under the prevailing 

reducing conditions leached it quantitatively and left a nearly pure, residllal Ti02 phase. 

It is thus evident that decreasing fOl during metamorphism is a determining step in thc 

natmal beneficiation of Fe-Ti oxides. 



66 

Acknowledgemen ts 

We thank Eric R. Force and Kerry 1. Stanaway for reviewing an early version of this 

paper. The fieldwork was supported by a Natural Sciences and Engineering Research 

Council of Canada (NSERC) grant awarded to Michel Gauthier (No. 2631-02). Venetia 

Bodycomb of Vee Geoservices revised the English. 



67 

References 

Adams SS, Curtis HS, Hafen PL (1974) Alteration of detrital magnetite-ilmenite in 
continental sandstones of the Morrison Formation, New Mexico. In: Formation of 
uranium deposits. Yienna, International Atomic Energy Agency Proceedings Series 
ST1/PUB!374, pp.219-253. 

Castonguay S, Ruffet G, Tremblay A, Féraud G (2001) Tectonometamorphic evolution of 
the southern Quebec Appalachians: 40Ar!39Ar evidence for Middle Ordovician crustal 
thickening and Silurian-Early Devonian exhumation of the internaI Humber zone. 
Geological Society of America Bulletin 113: 144-160. 

Charbonneau JM (1980) Région de Sutton (W). Ministère de l'Énergie et des Ressources 
du Québec, DPY-681, 89 pp. 

Clark TH (1936) A Lower Cambrian Series from Southern Quebec. Transactions of the 
Royal Canadian Institute, no 45, v. 21, part 1, p. 135-151 

Colpron M (1992) Géologie de la région du lac Brome (Estrie): ET- Direction Générale 
de l'Exploration Géologique et Minérale ET-90-09. 96 pp. 

Colpron M, Faure S, Dowling W (1994) Géologie de la région de Sutton (Montérégie): 
Ministère des Ressources Naturelles du Québec, ET 92-05. 85 pp. 

Desborough GA (1963), Mobilization of iron by alteration of magnetite-ulvospinel ln 

basic rocks in Missouri. Econ Geol: 58, 332-346. 

Dimanche F, Bartholomé P (1976) The alteration of ilmenite ln sediments. Minerais 
Science Engineering: 8, 187-200. 

Dowling WM (1988) Depositional environment of the lower Oak Hill Group, southern 
Quebec: implications for the late Precambrian breakup of North America in the Quebec 
reentrant: University ofYermont: Budington, YT, United States; Master's, 186 pp. 

Eugster HP (1959) Reduction and oxidation in metamorphism: Abelson, P.H. (cd.) 
Researches in geochemistry, p. 397-426. 

Frost BR (1991) Stability of oxide minerais ln metamorphic rocks. Reviews III 

minera10gy: 25, 468-487. 

Force ER (2000) Titanium minerai resources of the Western U.S., an update; with a 
section on Ione Basin, California by Force, E.R. and Creely, S.: U.S. Geological Survey 
Open-File Report 00-442, 43pp. 



68 

Force ER (1991) Geology of titanium-mineral deposits. Geological Society of America, 
Special Paper 259, 112 pp. 

Force ER, Butler RF, Reynolds RL, Houston RS (2001) Magnetic ilmenite-hematite 
detritus in Mesozoic-Tertiary placer and sandstone-hosted uranium deposi ts of the Rocky 
Mountains. Econ GeoI: 96,1445-1453. 

Grey lE, Reid AF (1975) The structure of pseudorutile and its role m the natural 
alteration of ilmenitc. Am Min: 60, 898-906. 

Gnmcr JW (1959) The decomposition of ilmenite. Econ Gcol: 54, 1315-1316. 

Hébert, E., and Gauthier, M., in press, Unconventional rutile deposits in the Quebcc 
Appalachians: Product of hypogene enrichment during low-grade metamorphism: 
Economic Geology. 

Marquis R, KumarapeIi PS (1993) An early Cambrian deltaic model for an Iapetan 
riftarm drainage system, southeastern Quebec. Can J of Earth Sci: 30, 1254-1261. 

Miyashiro A, (1964) Oxidation and reduction in the Earth's crust with special referencc 
to the role of graphite. Geochim Cosmochim Acta: 28, 717-720. 

Morad S, Aldahan AA (1986) Alteration of detrital Fe-Ti oxides in sedimentaIY rocks. 
Geol Soc Am Bull: 97, 567-578. 

Morad S, Aldahan AA (1987) Diagenetic chloritization of feldspars in sandstones. Sedim 
Geol: 51,155-164. 

Mücke A, Chaudhuri JNB (1991) The continuous alteration of ilmenite through 
pseudorutile to leucoxene. Ore Geol Reviews: 6, 25-44. 

Nesbitt BE, Kelly WC (1980) Metamorphic zonation of sulfides, oxides, and graphite in 
and around the orebodies at Ducktown, Tennessee. Econ Geol: 75,1010-1021. 

Ohmoto H, Goldhaber MB (1997) Sulfur and Carbon isotopes. In: Barnes, H.L. (Editors), 
Geochemistry of hydrothermal ore deposits, pp. 517-607. 

Reynolds RL, Goldhaber MB (l978a) 1ron-titanium oxide mineraIs and associated 
alteration phases in sorne uranium-bearing sandstones. U.S. Geological Survey Journal of 
research: 6, no.6, 707-714. 

Reynolds RL, Goldhaber MB (l978b) Origin of a South Texas roll-type uranium deposit; 
part l, Alteration of iron-titanium oxide mineraIs. Econ Geol: 73, 1677-1689. 

Rickard MJ (1964) Metamorphic tourmaline overgrowths in the Oak Hill senes of 
Southem Quebec. Can Mineralogist: 8, 86-91. 



69 

Southwick DL (1968) Mjneralogy of rutile -and apatite-bearing ultramafic chlorite rock, 
Har[ord County, Maryland. U.S. Geological Survey Professional Paper 600-C, 38-44. 

Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. 
MineralogicaJ Soc Am (ed.) 799 p. 

Spirakis CS (1996) The roles of organic matter in the formation of uranium deposits in 
sedimentary rocks. Ore Geol Reviews: 1],53-69. 

Thompson JB Jr (1972) Oxides and sulfides in regional metamorphism of pelitic schists. 
24

1h 
International Geological Congress- SectionlO, 27-35. 



CHAPTER IV
 
Origin of the CaB Mill Slate, Oak Hill Group: New insights based on Fe­


Ti oxides
 



71 

Introduction and previolls works 

The studied area is part of the Quebec Appalachians, in the Humber Zone, within 

a Cambrian volcano-sedimentary sequence, the Lower Oak Hill Group, near the town of 

Sutton (Fig. 4.1). The first stratigraphie studies were done by Clark (1931; 1934; 1936). 

He described alkaline volcanites at the base that he defined as the Tibbit Hill Formation. 

This Formation is overlied by a thin argillic unit, the Cali Mill Slate and a thick sandy 

unit, the Pinnacle Formation. Locally, concentrations of heavy minerals formed 

titaniferous paleoplacer deposits within the Cali Mill and the Pinnacle. Colpron (1992), 

and Marquis and Kumarapeli (1993) proposed that the source rocks for these placers 

were the anorthositic complexes of the Grenville Province. With the White Brook 

dolomite at the summit, this whole stratigraphie sequence represents a complete volcano­

sedimentary cycle associated with the development of a rift during the opening of the 

lapetus ocean (Fig. 4.2). The whole sequence has been deformed and metamorphosed to 

greenschist facies during the Taconian orogeny in Ordovician time (469-461 Ma) and 

during a Silurian backthrusting event (431-419 Ma; Castonguay, 2001). 

Clark (1934) defined the Cali Mill Slate as the inferior Member of the Pinnacle 

Formation. Later, Eakins (1964) considered the Cali Mill Slate as a distinct unit and 

defined it as the Cali Mill Formation. Charbonneau (1980) insisted on the thinness of the 

Cali Mill and defined it as a Member being an integral part of the Pinnacle Formation. 

However, more recent workers still consider the Cali Mill Slate as a distinct Formation 

from the terrigenous sediments of the Pinnacle (Dowling, 1988; Marquis, 1991). Dowling 

(1988) pointed out that the Cali Mill thickness is constant and continuous over several 

ki10meters. He proposed that the undemeath unit, the Tibbit Hill, may have formed a 

relatively flat rel ief, caused by erosion. Thus, these volcanic rocks were, during Cambrian 

time, exposed to subaerial weathered. The occurrence of conglomerates with chloritoid 

pebbles present within the Cali Mill testify of the Tibbit Hill volcanic rocks erosion 

(Marquis, 1991). Marquis (1991) proposed that these chloritoid pebbles may come from 

the erosion of lateritized volcanic rocks, justifying the classification of the Cali Mill as 
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Formation. Moreover, he also stated that the Cali Mill Slate was composed 

exclusively of volcanitic materials derived from the erosion of the Tibbit Hill. 

According to Dowling (1988), Colpron et al. (1994), and Gauthier et al. (1994), 

the titaniferous heavy minerai concentrations are exclusively associated to the Pinnacle 

sandstones. However, our field works revealed that titaniferous heavy mineraI 

concentrations also occur in the CaU Mill Slate (Colpron, 1992). Therefore, the Cali Mill 

origin and its relationship with the Pinnacle Formation must be re-examined, hence the 

purpose of this paper. Although several differences exist between these two units, the 

CaU Mill Slate and the Pinnacle sandstones have the same source rocks, the difference 

residing in the pre-depositional weathering history of each unit. 
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Description of the Cali Mill 

The CalI Mill Slate is alto 5-m thick phyllite continuously distributed over 

several kilometers (Fig. 4.3). Muscovite is the main mineraI observed with fine-grained 

detrital quartz (50-150!lm). Hematite is also very abundant (up to 30%), developed as 

fine-flaked crystals parallel to bedding, giving the Call Mill its shiny purple color (Fig. 

4.4). 

Locally, a heavy minerai thin bed, generally single, is observed in the Cali Mill Slate, 

usually at the top and in sharp contact with the surrounding argillic sediments. This lOto 

60 cm-thick bed is continuous only on a meter-scale, but is very massive and contains up 

to 95% of detrital heavy minerais (Fig. 4.5). Coarseness varies from 100 to 175 !lm of 

well-rounded and spherical grains. lImeno-hematite (hematite with small exsolutions of 

ilmenite) are the main detrital fraction component (45%; Fig. 4.6A). Fine, well-rounded, 

elongated grains of pseudorutile, an alteration product of hemo-ilmenite (ilmenite with 

small exsolutions of hematite) constitute 35% of the detrital fraction. Zircon is weil 

preserved and accounts for 10% of the detrital fraction. Tourmaline and titaniferous 

magnetite constitute the l'est of the detrital fraction. Ti-free hematite is also present in this 

facies, as fine flakes between detrital grains (Fig. 4.6B). Metamorphic overgrowths of 

hematite also surround detrital Fe-Ti oxide grains, c1early distinguishable from the 

ilmeno-hematite by the absence of ilmenite exsolutions (Fig. 4.6C). A characteristic 

feature of the heavy minerai beds is that detrilal pseudorutile grains are dissociated into 

hematite and rutile. ln sorne grains, rutile is observed in the middle of the grains, coated 

by the hematite, leaving the pseudorutile margins unaffected (Fig. 4.7A). ln contact with 

other grains, the pseudorutile is partially recrystallized into rutile (Fig. 4.7B). 

Compaction and pressure-dissolution seem to explain the rutile crystallization rather than 

element transfer between the two Fe-Ti grains, because the same phenomenon occurs 

even when a silicate is in contact with pseudorutile (Fig. 4.7C). 
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Figure 4.3 Photograph of an outcrop showing the Cali Mill phyllite in contact with 
the Pinnacle sandstones. 
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Figure 4.4	 Photomicrographs of metamorphic minerai assemblages of the Cali Mill 
Slate observed under plane polarized transmitted light. Hem = hematite, 
ms = muscovite, qtz = quartz. 
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Figure 4.5 Photograph of an outcrop showing a heavy mineraI bed (h.m.) within the 
Cali Mill phyllite. 
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Figure 4.6	 Photomicrographs of the Cali Mill heavy mineral beds observed in natural 
reflected light. A) Ilmeno-hematite constitutes the main dctrital fraction. 
Ilm-hem = ilmeno-hematite. B) Fine-flakes ofTi-free hematite (under oil). 
Hem = hematite, Ps = pseudorutile. C) Ti-frce hematite surrounding a 
detrital grain. Note the absence of ilmenite exsolutions. 
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The Cali Mill locally contains fine laminations of nanograins of anatase (Fig. 

4.7D). These horizons are generally devoid of fine-tlaked hematite. Conglomerates of 

chloritoid schist well-rounded pebbles also occur locally within the muscovite-rich and 

fine-quartz slates (Fig. 4.8). 
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Figure 4.7	 Photomicrographs of a Fe-Ti oxide grains observed under oil in natural 
reflected light. A) A pseudorutile grain dissociated into rutile and 
hematite. Note that the dissociation occurs in the middle of the grain, 
leaving the margin undissociated. Hem = hematite, Ps = pseudorutile, Rt = 
rutile. B) A pseudorutile grain transformed into rutile at the contact with 
other grains. C) A pseudorutile grain transformed into rutile at the contact 
with a silicate. Zrn = zircon. 0) Horizons of nanograins of anatase. Ant = 
anatase. 
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Figure 4.8 Photograph of an outcrop showing a conglomeratic horizon with chloritoid 
pebbles. 
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Pinn acle Description 

Pinnacle sandstones lie stratigraphically above the Cali Mill. In the Sutton area, at 

the base, the Pinnacle sandstones are composed of a quartz-muscovite-hematite 

assemblage, followcd by chloritic sandstones in the middle, with occurrences of 

centimetric to semimassive black beds of heavy mineraIs. The upper part of the Pinnacle 

is composed of muscovite-hematite-(dolomitic) wackes with millimetric cross-bedded 

laminations of heavy-minerals. Altogether, these facies form the ISO-m thick unit of thc 

Pinnacle. The semimassive black beds are constituted of almost 60% of fine-grained 

detrital heavy minerais within a chloritic matrix with metamorphic Ti-free magnetite and 

detrital quartz (Fig. 4.9). The heavy mineraI detrital fraction is composed essentially of 

hemo-ilmenite grains (65%), which have been altered totally or partially into rutile, 

through a pseudorutile and anatase intermediate stage by both pre-consolidation 

weathering and metamorphic processes (Fig. 4.10; Hebert and Gauthier, in press). 

llmeno-hematite constitutes 15% of the detrital fraction with fewer amounts of zircon 

(J 0%), titaniferous magnetite (5%), tourmaline and apatite (3%). 
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Figure 4.9	 Photomicrographs of metamorphic minerai assemblages of the Pinnacle 
sandstones observed under plane polarized transmitted light. Chi = 

chlorite, H.m. = heavy minerais, Mag = magnetite, Rt = rutile. 
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Figure 4.10 Photomicrographs of hemo­
ilmenite grains showing features that are 
interpreted to represent different stages of iron 

1	 leaching (observed under oil in naturaJ reflected 
light). A) a pitted hemo-ilmenite grain. Note that 
the hematite lamellae are not affected. Hem = 

hematite, Pit-ilm = pitted ilmenite. B) a 
pseudorutiJe grain showing a more homogeneous 
texture. Voids are preferentially developed along 
hematite exsolution planes. Ps = pseudorutile, C) 
a mesh-textured grain of anatase showing well­
developed porosity. Ant = anatase. D) a neorutile 
crystals developed from nanocrystalline anatase. 
Rt = rutile. E) Single grain of Stage 4 coarse­
grained neorutile. 
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Fe-Ti mineraIs 

Concentrations of Fe-Ti oxides occur both within the Cali Mill Slate and the 

Pinnac1e sandstones. Although these Fe-Ti oxides seem to come from the same source 

area, major differences exist between these two units (Fig. 4.11). The principal 

differences lie in the relative proportion of heavy mineraI phases, the sedimentologic and 

metamorphic aspect. 

Jlmeno-hematitelhemo-ilmenite 

The Cali Mill heavy minerai beds systematically contain a high proportion of 

ilmeno-hematite, which is about 45%. These ilmeno-hematite are well-rounded and have 

a spherical shape (Fig. 4.l2A). llmeno-hematite in the Pinnacle heavy minerai beds does 

not exceed 15%, whereas hemo-ilmenite represents 65% of the heavy mineraI 

assemblage. Hemo-ilmenite in both unit are systematically elongated and well-rounded 

(Fig.4.12B). 

Massive aspect 

Cali Mill heavy minerai beds are thin (10 to 60 cm) with sharp contacts with the 

surrounding slates and are characterized by their extremely massive aspect (up to 95%; 

Fig. 4.13A). In these beds, the detrital grains are fine (1 OOflm), whereas the Pinnacle 

heavy minerais are coarser (200-250flm), systematically less massive (max 60%) and the 

contact with the surrounding quartzite are less defined (Fig. 4.13B). 
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Cali Mill Pinnacle 

IImeno-hematite > hemo-ilmenite Hemo-ilmenite > ilmeno-hematite 

Thin massive beds (95% H.M.) Thick semi-massive beds (60% H.M.) 

Phyllite-hosted Sandstone-hosted 

Muscovite-hematite Chlorite-magnetite 

Detrital micro-anatase horizons Mesh-texture anatase grains 

Rutile => dissociation of pseudorutile Crystallization after anatase 

Figure 4.11 Diagram showing the major differences between the CalI Mill S\ate and 
the Pinnacle sandstones. 
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Figure 4.12	 Photomicrographs of Fe-Ti oxides observed in natural reflected light. A) 
I1meno-hematite grain of the Cali Mill. Note the spherical shape. I1m-hem 
= ilmeno-hematite. B) An elongated grain ofhemo-ilmenite from the 
Pinnacle sandstones. Hem-ilm = hemo-ilmenite. 
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Figure 4.13	 Photomicrographs of heavy minerais observed in natural reflected light. A) 
Cali Mill massive heavy minerai concentration. B) Pinnacle semimassive 
heavy minerai concentration. The matrix of chlorite is dark gray. 
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Metamorphic minerais 

The characteristic metamorphic minerais associated with the heavy minerai beds 

are magnetite, hematite, chlorite and muscovite. Although exceptions exist, hematitc and 

muscovite are closely assoeiated with the Cali Mill, whereas the occurrence of magnetite 

and chlorite are systematically associated with the Pinnacle heavy minerai semimassive 

beds. 

Pseudorutile 

The grains of pseudorutile in the Cali Mill heavy minerai beds are usually 

dissociated into rutile and hematite (Fig. 4.7 A). Therefore, iron is not Ieached out of the 

grain. By contrast, the iron of the Pinnacie pseudorutile is leached out, leaving a porous 

residual Ti02 grain (Fig. 4.1 OC). 
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Ti-enrichment 

During the formation of a heavy minerai placer, the titaniferous oxides can be 

enriched either before (i.e. at the source), during or after deposition. Many criteria have 

been developed to discriminate the timing of each enrichment (Force, 1991). Both Ca.11 

Mill and Pinnacle detrital Fe-Ti oxides show a residual enrichment, as demonstrated by 

the progressive leaching ofiron (Fig. 4.14; see also Chapter 2 for enrichment processes). 

Pre-depositional weathering 

The Cali Mill Fe-Ti oxides show sorne pre-depositional weathering features. 

Coarse grains of leucoxene are observed among finer grains of ilmenite; this reflects a 

pre-depositional weathering (Fig. 4.15; Wilcox, 1971; Force, 1991). The Cali Mill Slate 

contains a greater proportion of ilmeno-hematite (45%) than hemo-Îlmenite (35%) 

compared with the 15% of ilmeno-hematite present in ail the other heavy minerai 

concentrations of the Pinnacle sandstones. The abundance of ilmeno-hematite may reflect 

deep pre-depositional weathering because the thick exsolution of hematite (or ilmeno­

hemanite) are more resistant to weathering than ilmenite (or hemo-ilmenite) which is 

usually leached in lateritic or saprolitic environment (Overstreet et al., 1963; Herz, 1976; 

Force, 1991). The ilmenite is usually transformed into a porous residllal aggregate of 

Ti02 (lellcoxene). Such fragile aggregate could hardly survives transport. These 

destroyed grains may remain or deposit among argillic particles, or mud such as the 

nano-grains of anatase found in the CaU Mill Slate (Fig. 4.7D; Valentine and Commeau, 

1990). 
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Figure 4. J5	 Photomicrographs of a Cali Mill heavy minerai bed observed in natural 
reflccted light. A coarse leucoxene grain among finer heavy minerai 
grains. H.M. = heavy minerais. 
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Depositional environmenf 

Enrichments of heavy minerais occurnng at the depositional site are induced 

principally by mechanical processes during transport and sedimentation. Different agents, 

such as waves, running water and wind can concentra te heavy mineraIs at a depositional 

site. For instance, the Cali Mill heavy mineraI beds show some depositional enrichment 

features. They are well-sorted, thin, single, very massive (95% h.m.), continuous on a few 

meters and generally in sharp contact at the top of argillic sediments (Fig. 4.5). The 

position of heavy mineral beds at the top of a sequence is a typical sedimentary feature 

derived from a flash flood event (Lucchitta and Suneran, 1981). However, such 

concentrations of heavy minerais reaching 95% is rarely observed in nature (K.J. 

Stanaway, pers. commun., 2006). Nevertheless, according to Lucchitta and Suneson 

(1981), the accumulation of heavy minerais depend on the availibility of a source in the 

surrounding rocks. ln the Sutton case, the source rocks are the ilmenite-rich Grenvillian 

terrains. Moreover, the source rocks were probably already residually enrichcd by the 

destruction of light minerais during lateritization, thus couId casily explain the very high 

concentration of heavy minerais. This flash-flood concentration implies that during the 

time of deposition, the Cali Mill Slate was under arid or desertic environment (Lucchitta 

and Suneson, 1981), which is consistan t with the previous interpretation (Marquis and 

Kumarapeli, 1993). By contrast, the Pinnacle semimassive beds are in graduai contact 

with the surrounding rocks, which are composed of sandstones. 

Post-depositional enrichment 

After deposition, the Cali Mill underwent diagenesis and two metamorphic 

episodes, both reaching the greenschist metamorphic facies in which the Fe-Ti oxides 

could have been residually enriched in Ti02 (Colpron, 1992; Colpron et al, 1994; 

Castonguay, 2001). The presence of hematite between the grains suggest that iron derived 

from the leaching of Fe-Ti grains reprecipitated firstly as hydroxides and then 

metamorphosed to hematite (Force, 1991, Clout, 2005). Thus, this implies that the Cali 

Mill heavy minerais have also been weathered after deposition (Force, 1991). 
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Discussion 

Based on the mineralogy, we proposed that, in the Sutton region, the Cali Mill 

Slate and the Pinnacle sandstones have the same source rock, i.e. a magma tic ilmenite­

ricb source. However, great differences exist between these two units, such as the 

sedimentologic aspect and the propol1ion of heavy mineraIs. These dichotomies must be 

taken in account when interpreting the origin of the Cali Mill. Although the Cali Mill and 

Pinnacle have the same source rock, the major differences lie in the different weathering 

history at the source. The paleolatitude of the region during the time of deposition also 

has to be considered in such interpretation. The Sutton region was near equatorial latitude 

during Cambrian time, thus deep-weathering wou Id have been active (Fig. 4.1; Irving, 

1981). 

According to texturai and mineralogical evidences, we propose that the Cali Mill Slate is 

formed [rom the erosion of a lateritic or deep-weathered profile affecting the Fe-Ti 

anorthositic source rocks, whereas the Pinnacle is the result of the erosion of deeper 

unweathering profile (Fig. 4.16). The main evidence lies on the Fe-Ti oxides themseJves. 

The presence of detrital micro-grained anatase horizons in the Cali Mill Slate suggest a 

deep-weathered source rock, as obscrved in unconsolidated titaniferous placers, but also 

in Jateritized and bauxitized igneous rocks (Overstreet et aL, 1963; Herz, 1976; Force, 

1991). These porous grains can only be preserved when formed at the depositional site, 

otherwise transpolt wou Id destroy their fragile structure and isolate the micro-crystals of 

anatase (Grey and Reid, 1975; Force, 1991). Thus, the presence of fine laminations of 

micro-crystalline anatase in the Cali Mill Slate implicates that the source rocks must have 

been deeply weathered. 
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Figure 4.16	 Schematic of an hypothetical weathered source rock of the Lower Oak Hill 
Group (for the Cali Mill and the Pinnacle). 
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A second evidence is the high ilmeno-hematite/hemo-ilmenite ratio in the CalI 

Mill massive beds. Under lateritic or deep-weathcring conditions, hematite (or ilmeno­

hematite) is more stable than ilmenite (or hemo-ilmenite), because ilmenite is altered 

partially as pseudorutile or completely into a pure Ti02 phase, such as an aggregate of 

anatase (Overstreet et al., 1963; Herz, 1976; Force, 1991). Thus, the a1teration ofhemo­

ilmenite, which is proved to occur by the presence of detrital anatase horizons, lead to a 

residual increasing in the ilmeno-hematite proportion of the source rocks. This implicates 

that the Fe-Ti oxide detrital grains were already at an advanced stage of alteration when 

they were deposited in the Cali Mill massive beds. Moreover, other light mineraIs were 

also chemically destroyed under lateri tic conditions, thus increasing the genera 1 

proportion of detrital heavy minerais in placers (here, up to 95%; Force, 1991). The 

presence of coarse grains of leucoxene (which have survived transport) in hydraulic 

equivalence with finer ilmenite grains is observed only in the Cali Mill and thus testify a 

pre-depositional weathering. 

The hematite-rich content in the Cali Mill Slate also suggests an erOSlOn of a 

deep-weathered source rock. The fine-fiaked texture of hematite observed is simply the 

metamorphic re-crystallization of an iron-rich mud (Clout and Simonson, 2005). We 

suggest that the source of this iron is the erosion of iron-rich horizons of the lateritic 

profile. 

Another argument is the stratigraphical position of the Cali Mill Slate. It is the 

first sedimentary unit and is relatively thin, and the main terrigenous unit -the Pinnacle­

lies immediately above it. Therefore, the Pinnacle sandstones represent the erosion 

product of the hypogen non-altered anorthositic source rocks. The absence of detrital 

anatase micro-grains and the high hemo-ilmenite content of the Pinnacle semimassive 

beds suggest that the original hemo-ilmenite of the source rock was preserved. The 

relative abundance of light minerais in the semimassive beds also corroborate the 

preservation of less stable minerai of the source rocks. 
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Interpretation and conclusion 

We interprete that the Sutton paleoplacer source rock, the Grenville high­

metamorphosed terrains, were lateritized. When eroded during Cambrian time, the 

lateritized part formed the Fe-rich horizon of the Cali Mill. While the source region was 

affected by lateritic conditions, the environment of deposition of the Cali Mill is however 

interpreted to be more desertic (arid conditions), as the heavy minerai flash flood deposits 

suggest (Lucchitta and Suneson, 1981). Dowling (1988) interpreted the Cali Mill to be a 

lacustral deposit in an unturbulent environment. The abundance of micas and fine-grained 

quartz point out toward this interpretation. However, the presence of conglomerate and 

massive heavy mineraI beds suggests a dynamic environ ment instead of an unturbulent 

lake. These high energy level sediments, such as the well-sorted, massive heavy minerai 

beds in sharp contact with the matrix-rich slates with angular quartz grains is inconsistent 

with the previolls interpretation of the Cali Mill origin. Our observations give new 

elements regarding the Cali Mill origin; however, to reconsider the actual stratigraphy, if 

it should be describe as a Formation or a Member of the Pinnaclc Formation, is premature 

becausc the above-mentionned observations are limited to the Sutton area. A more 

regional field work has to be do ne before taking any decision. 

The timing of enrichment of the Fe-Ti oxides is crucial in regard to economic 

viability of the titaniferous mineraIs. ln the Cali Mill, pre-depositional weathering 

prevented ilmenite to be leached from its iron content by post-depositional enrichment. 

Iron cement coated some grains and preserved them from further leaching as shown by 

the abundance of hematite overgrowths (Force, 1991). Moreover, the Cali Mill heavy 

mineraI beds being derived from a weathered source rock, the ilmenite was already 

oxidized (i.e., transformed into a ferric state, the pseudorutile) and thus could be leached 

from its iron content by further metamorphic process which required reduced condition 

(Grey and Reid, 1975). By contrast, ilmenite from the Pinnacle sandstone which are 

interpreted to be deposit from a unweathered source rock, could undergo further 

enrichment due to the potential of trapping oxygen (See Chapter 3). In this case, reducing 

conditions were provided by ferrous-bearing minerai such as unweathered ilmenite, 

which are abundant in the Pinnacle sandstones. 
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General Discussion and Conclusion 

The titaniferous heavy minerai concentrations of the Sultan metamorphosed 

paleoplacers underwent severa] minerai transformations (alterations), which included 

weathering, diagenesis and metamorphism. New mineraI phases, induced by such 

transfonnations, were formed; their nature, abundance, and distribution depending on the 

timing of each transformation process. 

In the first part of this study, the different Fe-Ti minerais of the Pinnacle 

semimassive beds were discussed. A petrographical study demonstrated that post­

depositional and metamorphic iron leaching from hemo-ilmenite transformed the grains 

into a nearly-pure Ti02 residual phase. Further metamorphism allowed these porous Ti02 

grains to recrystallize as coarse-grained rutile. 

It has been demonstrated that reducing conditions during metamorphism were 

necessary to allow iron leaching. Such reducing conditions, marked by the presence of 

metamorphic magnetite, were only observed in the Pinnacle semimassive heavy minerai 

beds. The presence of unweathered hemo-ilmenite grains (i.e. with ferrous iron) in 

sufficient quantity was essential to induce reducing conditions during metamorphism. 

Oxidized metamorphic fluids circulating within these rich Fe2 
+-bcaring minerai horizons, 

which acted as an oxygen trap, were reduced by oxygen consumption during the 

transformation of ilmenite (Fe2+) into pseudorutile (FeJ+) according to: 

Such minerai transformation provides reducing conditions that are necessary to further 

leaching of the newly formed minerai, i.e. pseudorutile. The leached iron is incorporated 
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into other oxides and silicates, leaving a nearly pure Ti02 minerai compJetely purged of 

its iron. 

Iron leaching of Fe-Ti oxides was not observed in the Call Mill massive heavy 

mineraI beds. Our study showed that the Call Mill heavy mineraI source rock underwent 

pervasive weathering. As a result, only weathered ilmenite (or pseudorutile) were present 

during the time of deposition. When metamorphosed, these Fe-Ti concentrations did not 

have the capacity of reducing the oxidized metamorphic fluids, as the Pinnacle 

semimassive ilmenite-rich beds did. The main reason was because the Call Mill heavy 

minerais were majoritary Fe3+ bearing minerais, typical of a deeply weathered source 

rock. Therefore, the Call Mill underwent metamorphim under oxidized conditions. As a 

result, no iron leaching could have occurred during further metamorphism. Such oxidized 

metamorphic conditions created a completely different minerai paragenesis for Fe-Ti 

oxides. Instead of finding nearly-pure Ti02 minerais, due to iron leaching, the CalI Mill 

contains titaniferous oxides intermixed with ferriferous oxides. Pseudorutile dissociated 

into rutile and hematite, resulting from an oxidizing metamorphism, are therefore only 

observed in the Call Mill heavy minerai beds. 

In conclusion the timing of the weathering is crucial, because it determines if the 

iron would be leached out of the minerai phase or would remain as two minerai phases 

intermixed within a single grain, thus affecting the economic viability of the placer. 



APPENDIXA
 
Analysis of Fe-Ti oxides (1)
 

\. Grains of Fe-Ti oxides were selected on polished thin sections and analyzed using a JEOL- JXA-8900 
electron microprobe operated at 15kV, with a specimen current of20nA and a beam diameter of 10 ~m 



APPENDIX A. Analysis of Fe-Ti oxides (wt %) 

Sample # 
Oxide 

30C 30C 30C 
Pilted-ilmenile 

30C 30C 30C 30C 30C 30E 

Si02 
Ti02 
AI20 3 

FeO' 
MnO 

MgO 

CaO 

P20S 

V 20 3 

Cr203 

Nb20 S 
Th02 

U02 

Total 

0,15 

45,35 

0,89 

48,48 

0,00 

0,01 

0,01 

0,01 

0,11 

0,08 

0,00 

0,00 

0,03 

95,11 

0,21 

45,49 

0,87 

47,91 

0,00 

0,08 

0,03 

0,00 

0,09 

0,03 

0,00 

0,00 

0,02 

94,70 

0,06 

50,63 

0,35 

44,42 

0,00 

0,00 

0,03 

0,00 

0,09 

0,04 

0,00 

0,03 

0,03 

95,68 

0,10 

48,89 

0,32 

45,32 

0,00 

0,02 

0,00 

0,00 

0,13 

0,02 

0,09 

0,00 

0,00 

94,88 

0,15 

45,84 

0,35 

48,40 

0,03 

0,02 

0,00 

0,02 

0,09 

0,04 

0,05 

0,02 

0,02 

95,02 

0,31 

37,18 

0,40 

55,42 

0,00 

0,05 

0,03 

0,00 

0,13 

0,00 

0,00 

0,00 

0,00 

93,51 

0,06 

52,36 

0,18 

42,24 

0,00 

0,01 

0,01 

0,01 

0,16 

0,00 

0,00 

0,00 

0,00 

95,02 

0,08 

51,44 

0,19 

44,03 

0,00 

0,02 

0,02 

0,00 

0,16 

0,00 

0,03 

0,13 

0,00 

96,11 

0,08 

41,33 

0,50 

53,11 

0,00 

0,02 

0,00 

0,01 

0,21 

0,02 

0,01 

0,00 

0,09 

95,37 

'Total Fe reported as FeO 

A.1 104 



APPENDIX A. Analysis of Fe·Ti oxides (wt %) 

Sample # 
Oxide 

30E 30E 30E 
Pilted-ilmenite 

30E 30E 30E 30E 30E 30E 

Si02 
Ti02 

AI20 3 

FeO' 

MnO 

MgO 

CaO 

P20S 

V20 3 

Cr203 

Nb20 S 

Th02 

U02 

Total 

0,04 

50,28 

0,59 

45,08 

D,DO 

0,00 

0,03 

0,01 

0,11 

0,03 

0,11 

0,04 

D,DO 

96,33 

0,13 

94,70 

0,46 

4,30 

0,00 

0,00 

0,04 

0,00 

0,13 

0,02 

0,09 

0,00 

0,00 

99,85 

0,12 

98,29 

0,09 

0,65 

0,01 

0,01 

0,04 

0,01 

0,10 

0,04 

0,17 

0,01 

0,01 

99,55 

0,08 

97,13 

0,08 

1,28 

0,01 

0,00 

0,03 

0,00 

0,18 

0,05 

0,62 

D,DO 

0,02 

99,46 

0,13 

76,97 

0,37 

20,57 

0,02 

0,03 

0,03 

0,00 

0,17 

0,07 

0,03 

0,00 

0,00 

98,40 

2,42 

79,96 

0,48 

15,22 

0,02 

0,12 

0,01 

0,00 

0,21 

0,04 

0,15 

0,00 

0,04 

98,68 

0,08 

77,42 

0,41 

18,90 

0,01 

0,00 

0,00 

0,01 

0,21 

0,06 

0,04 

0,03 

0,08 

97,23 

0,12 

56,48 

0,24 

38,43 

D,DO 

0,01 

0,01 

0,00 

0,20 

0,06 

0,10 

0,03 

0,06 

95,74 

0,07 

76,37 

0,13 

20,85 

0,01 

0,01 

0,02 

0,01 

0,10 

0,03 

0,15 

D,DO 

0,01 

97,76 

'Total Fe reported as FeO 

A.2 105 



APPENDIX A. Analysis of Fe-Ti oxides (wt %) 

Sample # 
Oxide 

30E 
Pitted-ilmenile 

30E 30E 30E 

Si02 

Ti02 

AI20 3 

FeO' 

MnO 

MgO 

CaO 

Pps 

VP3 

Cr20 3 

Nb20 S 

Th02 

U02 

Total 

0,35 

46,74 

0,43 

46,84 

0,05 

0,12 

0,01 

0,00 

0,21 

0,05 

0,00 

0,00 

0,00 

94,80 

0,61 

38,99 

0,68 

53,33 

0,01 

0,42 

0,02 

0,00 

0,23 

0,03 

0,00 

0,07 

0,01 

94,40 

0,05 

54,76 

0,01 

40,94 

0,01 

0,00 

0,00 

0,01 

0,12 

0,00 

0,02 

0,00 

0,01 

95,93 

0,41 

51,40 

0,09 

43,48 

0,00 

0,00 

0,02 

0,00 

0,18 

0,07 

0,10 

0,05 

0,02 

95,81 

'Total Fe reported as FeO 

A3 106 



APPENDIX A. Analysis of Fe-Ti oxides (wt %) 

Pseudorutile 
Sampie # 3OC 3OC 3OC 3OC 3OC 3OC 3OC 3OC 3OC 
Oxide 

Si02 0,17 0,09 0,13 0,06 1,04 0,14 0,12 0.08 0.01 

Ti02 57,74 54,06 57,24 65,46 58,58 58,88 58,14 58,46 87,64 

AI 2O) 0,59 0,37 0,53 0,63 3,14 0,34 0,73 0,39 0,03 

FeO ' 37,17 40,82 37,48 29,47 31.80 35,52 36,34 36,65 11,06 

MnO 0,02 0,00 0,03 0,01 0,00 0,00 0,01 0,01 0.01 

MgO 0,00 0,00 0,00 0.00 0,01 0,00 0,01 0,01 0,02 

CaO 0,02 0,01 0,04 0,04 0,03 0,03 0,01 0,02 0,01 
P20 S 0,00 0,00 0,01 0,00 0,00 0,01 0,03 0,00 0,01 

V2 0 3 0,12 0,16 0,11 0,05 0,16 0,12 0,13 0,09 0,11 

Cr203 0,02 0,00 0,02 0,00 0,02 0,01 0,04 0,06 0,02 

Nb20 S 0,03 0,00 0,42 0,06 0,02 0,00 0.04 0,04 0,61 

Th02 0,00 0,02 0,00 0,00 0,00 0,02 0,05 0,08 0,04 

U02 0,00 0,00 0,00 0,00 0,00 0,02 0,08 0,03 0,00 

Total 95,88 95,53 96,00 95,78 94,80 95,08 95,72 95,91 99,57 

'Total Fe reporled as FeO 

A.4 107 



APPENDIX A. Analysis of Fe-Ti oxides (wt %) 

Sample # 
Oxide 

30C 30E 30E 
Pseudorutile 

30E 30E 30E 30E 30E 30E 

Si02 

Ti02 

AI 20 3 

FeO' 

MnO 

MgO 

CaO 
P2 0 S 

V20 3 

CrP3 

Nb20 S 

Th02 

U02 

Total 

3,22 

87,76 

1,32 

4,88 

0,00 

0,08 

0,06 

D,DO 

0,12 

D,DO 

0,18 

0,00 

D,DO 

97,61 

1,12 

89,16 

0,60 

7,37 

0,01 

0,24 

0,01 

0,01 

0,13 

0,03 

0,10 

0,05 

D,DO 

98,83 

0,16 

59,47 

0,28 

35,97 

0,01 

0,02 

0,00 

0,02 

0,18 

0,03 

0,02 

0,04 

0,05 

96,25 

D,54 

75,40 

0,45 

20,37 

0,01 

0,12 

0,05 

D,DO 

0,23 

0,00 

0,13 

0,00 

0,07 

97,37 

D,DO 

73,73 

0,10 

23,81 

0,00 

0,00 

0,01 

0,03 

0,18 

0,01 

0,36 

0,05 

D,DO 

98,28 

1,12 

77,92 

0,95 

17,05 

0,00 

0,64 

0,01 

0,01 

0,17 

0,07 

0,24 

0,00 

D,DO 

98,18 

0,09 

69,05 

0,12 

27,35 

D,DO 

0,04 

0,01 

0,02 

0,13 

0,03 

0,05 

D,DO 

0,03 

96,92 

0,04 

63,73 

0,20 

32,09 

0,02 

0,00 

0,02 

0,02 

0,18 

0,03 

0,12 

0,00 

0,00 

96,43 

0,31 

77,21 

0,89 

18,97 

0,00 

0,19 

0,02 

0,00 

0,19 

0,01 

0,08 

0,01 

D,DO 

97,87 

'Total Fe reporled as FeO 

A.5 108 



APPENDIX A. Analysis 01 Fe-Ti oxides (wt %) 

Sample # 
Oxide 

30E 30E 30E 
Pseudorutile 

30E 30E 30E 30E 30E 30E 

Si02 
Ti02 
AI20 3 

FeO' 

MnO 

MgO 

CaO 
P20 S 

V20 3 

Cr203 

NbPs 
Th02 

U02 

Total 

0,07 

53,56 

0,26 

41,40 

0,00 

0,02 

0,01 

0,03 

0,21 

0,01 

0,00 

0,09 

0,03 

95,67 

0,23 

54,93 

0,55 

39,33 

0,01 

0,13 

0,03 

0,02 

0,22 

0,05 

0,00 

0,01 

0,03 

95,55 

0,09 

85,50 

0,01 

12,98 

0,00 

0,01 

0,02 

0,02 

0,24 

0,01 

0,16 

0,00 

0,04 

99,07 

0,06 

65,72 

0,17 

31,14 

0,01 

0,02 

0,02 

0,03 

0,24 

0,04 

0,01 

0,02 

0,00 

97,46 

0,10 

58,35 

0,14 

37,23 

0,00 

0,01 

0,01 

0,00 

0,18 

0,07 

0,03 

0,00 

0,04 

96,17 

0,06 

61,16 

0,07 

35,84 

0,04 

0,01 

0,02 

0,03 

0,17 

0,00 

0,00 

0,00 

0,03 

97,42 

0,93 

91,59 

0,93 

4,65 

0,00 

0,05 

0,06 

0,03 

0,03 

0,02 

0,14 

0,13 

0,08 

98,64 

0,53 

96,21 

0,21 

1,70 

0,00 

0,08 

0,04 

0,01 

0,14 

0,04 

0,16 

0,00 

0,05 

99,17 

0,04 

94,68 

0,02 

5,54 

0,00 

0,00 

0,00 

0,01 

0,21 

0,04 

0,00 

0,00 

0,00 

100,54 

'Tolal Fe reported as FeO 

A.6 109 



APPENDIX A. Analysis of Fe-Ti oxides (wl %) 

Sample # 
Oxide 

3OC 
Pseudorutile 

3OC 30E 30E 

Si02 
Ti02 
AI20 3 

FeO' 

MnO 

MgO 

CaO 
P20 S 

V20 3 

Cr203 

Nb20 S 

Th02 

U02 

Talai 

0,03 

75,93 

0,07 

21,89 

0,00 

0,00 

0,00 

0,00 

0,14 

0,00 

0,54 

0,00 

0,05 

98,66 

0,07 

58,62 

0,32 

36,95 

0.03 

0,01 

0,00 

0,02 

0,09 

0,03 

0,08 

0,06 

0,03 

96,31 

0,07 

55,59 

0,24 

39,69 

0,00 

0,03 

0,01 

0,00 

0,20 

0,07 

0,06 

0,01 

0,02 

95,98 

0,64 

60,76 

0,29 

33,63 

0,01 

0,00 

0,01 

0,00 

0,17 

0,16 

0,00 

0,00 

0,00 

95,67 

'Total Fe reported as FeO 
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APPENDIX A. Analysis of Fe-Ti oxides (wt %) 

Sample # 
Oxide 

30E 30E 30E 
Anatase-rulile 

30E 30E 30E 30E 30E 30E 

Si02 
Ti02 
AI20 3 

FeO' 

MnO 

MgO 

CaO 

P20S 

V20 3 

Cr203 

NbPs 

Th02 
U02 

Total 

2,79 

91,72 

0,43 

3,48 

0,00 

0,12 

0,01 

0,00 

0,20 

0,00 

0,18 

0,05 

0,00 

98,97 

0,63 

97,00 

0,13 

1,45 

0,00 

0,00 

0,02 

0,00 

0,16 

0,01 

0,13 

0,07 

0,06 

99,67 

0,11 

97,62 

0,18 

1,02 

0,00 

0,00 

0,03 

0,00 

0,17 

0,00 

0,11 

0,00 

0,02 

99,25 

0,55 

97,63 

0,15 

0,77 

0,00 

0,01 

0,01 

0,02 

0,21 

0,02 

0,08 

0,08 

0,00 

99,53 

0,04 

99,16 

0,06 

0,66 

0,01 

0,01 

0,03 

0,01 

0,24 

0,01 

0,18 

0,00 

0,01 

100,41 

0,13 

97,94 

0,10 

0,81 

0,00 

0,00 

0,09 

0,00 

0,23 

0,01 

0,09 

0,05 

0,00 

99,44 

1,57 

94,93 

0,31 

1,37 

0,03 

0,11 

0,03 

0,00 

0,13 

0,01 

0,83 

0,00 

0,00 

99,33 

0,10 

99,48 

0,06 

0,70 

0,01 

0,01 

0,05 

0,00 

0,13 

0,01 

0,14 

0,01 

0,05 

100,75 

0,06 

92,35 

0,27 

6,48 

0,00 

0,00 

0,03 

0,00 

0,20 

0,03 

0,02 

0,01 

0,01 

99,44 

1Total Fe reported as FeO 

A.8 111 



APPENDIX A. Analysis of Fe-Ti oxides (wt %) 

Anatase-rutile 
Sample # 30E 30E 30E 30E 30E 30E 30E 30E 30E 
Oxide 

Si02 0,13 0,16 0,04 0,01 0,03 2,86 2,14 3,89 0,35 

Ti02 98,30 98,45 97,60 99,07 98,04 95,31 94,67 94,43 97,40 

AI20 3 0,13 0,03 0,10 0,03 0,06 0,20 0,41 0,12 0,17 

FeO' 0,82 0,67 0,73 0,60 0,83 1,08 1,19 0,72 0,87 

MnO 0,00 0,04 0,00 0,00 0,00 0,03 0,00 0,01 0,00 

MgO 0,08 0,00 0,02 0,00 0,01 0,08 0,24 0,01 0,03 

CaO 0,03 0,03 0,10 0,02 0,03 0,01 0,03 0,03 0,11 

P20S 0,00 0,01 0,00 0,00 0,00 0,02 0,01 0,00 0,00 

V20 3 0,18 0,13 0,20 0,17 0,18 0,15 0,23 0,20 0,22 

Cr203 0,02 0,04 0,00 0,09 0,06 0,00 0,02 0,04 0,00 

Nb20 S 0,16 0,18 0,07 0,02 0,57 0,10 0,09 0,43 0,05 

Th02 0,00 0,11 0,00 0,07 0,02 0,00 0,14 0,00 0,00 

U02 0,02 0,01 0,07 0,00 0,00 0,00 0,04 0,00 0,00 

Total 99,85 99,86 98,92 100,08 99,83 99,84 99,18 99,87 99,19 

'Total Fe reporled as FeO 

A.9 112 



APPENDIX A. Analysis of Fe-Ti oxides (wt %) 

Sample# 
Oxide 

30E 30E 30E 
Anatase-Rutile 

30E 30E 30E 30E 30E 

Si02 
Ti02 
AI20 3 

FeO' 
MnO 

MgO 

CaO 
P20 S 

V20 3 

Cr203 

Nb20 S 

Th02 

U02 

Total 

0,07 

98,22 

0,20 

0,60 

D,DO 

D,DO 

0,09 

D,DO 

0,21 

D,DO 

0,02 

0,09 

0,01 

99,51 

0,02 

98,44 

0,04 

0,75 

D,DO 

D,Dl 

0,03 

0,00 

0,04 

0,03 

0,29 

D,DO 

0,04 

99,68 

0,12 

98,15 

0,08 

0,85 

0,01 

D,DO 

0,10 

0,00 

0,12 

0,02 

0,12 

D,DO 

0,00 

99,55 

0,32 

95,96 

0,29 

2,95 

0,01 

0,13 

0,04 

D,Dl 

0,18 

0,01 

0,06 

0,08 

0,03 

100,04 

4,19 

92,40 

0,10 

2,24 

0,02 

0,01 

0,03 

D,DO 

0,22 

D,DO 

0,13 

0,12 

0,01 

99,47 

0,19 

98,15 

0,12 

0,80 

D,DO 

D,DO 

0,09 

0,01 

0,22 

0,01 

0,21 

D,DO 

0,07 

99,87 

0,02 

95,77 

0,00 

3,35 

D,DO 

D,Dl 

0,02 

0,00 

0,24 

0,03 

D,DO 

0,05 

0,01 

99,50 

0,06 

98,10 

0,04 

D,56 

0,00 

0,00 

0,07 

D,DO 

0,25 

0,03 

0,09 

0,07 

0,08 

99,36 

'Total Fe reported as FeO 

A.10 113 



APPENDIXB
 
Analysis of chIorite (1)
 

1. Flakes of chlorite were selected on polished thin sections and analyzed using a JEOL- JXA-8900 
electron microprobe operated at J5kV, with a specimen CUITent of20nA and a beam diameter of 10 ~Lm 

Ali the sampIes come from a typical section, outcrop # 30 (see localization map). 



APPENDIX B. Analysis of chlorite (wt %) 

Chlorite - Zone B 

Si02 24,95 25,96 26,54 25,99 26,09 27,24 26,10 26,37 26,79 26,23
 

102 0,17 0,19 0,00 0,07 0,48 0,52 0,04 0,05 0,02 0,07
 
AI20 3 19,98 19,94 19,53 19,56 19,73 20,32 20,24 20,41 19,83 20,12
 

FeO' 19,89 19,88 20,81 19,99 20,27 20,35 20,85 21,12 19,31 18,79
 

MnO 0,21 0,19 0,22 0,22 0,20 0,18 0,25 0,21 0,40 0,37
 

rvlgO 18,19 18,38 19,43 18,99 18,09 17,03 18,77 18,52 19,61 20,46
 

CaO 0,00 0,00 0,01 0,04 0,00 0,04 0,01 0,01 0,03 0,00
 
Na20 0,01 0,01 0,04 0,10 0,00 0,05 0,03 0,05 0,00 0,00
 

K10 0,04 0,01 0,00 0,06 0,03 0,82 0,06 0,05 0,03 0,00
 

Total 83,44 84,55 86,58 85,02 84,88 86,53 86,34 86,78 86,00 86,05
 

'Talai Fe reported as FeO 
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APPENDIX B. Analysis of chlorite (wt %) 

Chlorite - Zone C 

Si02 25,24 25,33 29,98 24,91 25,88 24,88 28,36 25,13 25,21
 

Ti02 0,04 0,05 0,36 0,06 0,06 0,15 0,22 0,30 0,07
 

AI2O] 21,24 21,06 20,39 21,70 21,68 21,37 22,77 21,02 21,30
 

FeO' 23,90 24,57 22,94 24,02 23,54 25,25 22,15 23,40 24,33
 

MnO 0,48 0,44 0,43 0,47 0,46 0,53 0,42 0,25 0,22
 

MgO 15,59 15,67 15,03 15,82 15,27 15,21 12,38 15,89 16,10
 

CaO 0.01 0,01 0,01 0,00 0,00 0,00 0,01 0,00 0,01
 
Na20 0,01 0,04 0,01 0,00 0,00 0,00 0,09 0,01 0,01
 

K20 0,02 0,04 0,01 0,02 0,50 0,02 1,93 0,01 0.00
 

Total 86,53 87,19 89,15 87,00 87,40 87,40 88,33 86,02 87,25
 

'Tolal Fe reporled as FeO 
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APPENDIX B. Analysis of chlorite (wt %) 

Chlorite - Zone C 

5i02 25,52 25,66 25,70 24,74 24,71 25,83 24,59 25,11 24,92
 

TI02 0,06 0,03 0,01 0,12 0,12 0,28 0,19 0,19 0,08
 

AI20 J 21,14 20,90 20,61 21,29 21,22 20,45 20,94 20,90 20,59
 

FeO' 23,39 24,04 24,71 23,43 23,64 24,63 24,17 24,22 24,83
 

MnO 0,25 0,20 0,22 0,30 0,31 0,29 0,43 0,37 0,37
 

MgO 16,75 16,55 16,29 16,25 16,15 16,02 16,05 16,06 15,56
 

CaO 0,00 0,01 0,01 0,00 0,00 0,00 0,01 0,02 0,02
 

Na20 0,01 0,00 0,00 0,01 0,00 0,00 0,00 0,03 0,00
 

K20 0,00 0,02 0,00 0,01 0,00 0,01 0,00 0,04 0,00
 

Talai 87,13 87,41 87,55 86,15 86,14 87,49 86,39 86,93 86,37
 

'Total Fe reporled as FeO 
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APPENDIX B. Analysis of chlorite (wt %) 

Chiorite - Zone C 

Si02 25,60 24,33 25,80 24,65 24,02 24,26
 

Ti0 2 0,33 0,03 0,12 0,10 0,09 0,11
 

AI20 3 20,34 21,37 19,80 21,93 22,10 21,75
 

FeO' 24,14 26,95 24,48 25,65 26,29 25,15
 

MnO 0,68 0,72 0,70 0,73 0,74 0,72
 

MgO 15,65 14,25 15,76 14,66 13,93 14,71
 

CaO 0,03 0,03 0,04 0,04 0,01 0,07
 
Na 20 0,00 0,03 0,02 0,00 0,03 0,02
 

K20 0,00 0,01 0,02 0,00 0,01 0,00
 

Total 86,77 87,73 86,74 87,76 87,21 86,78 

'Total Fe reported as FeO 
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APPENDIX B. Analysis of chlorile (wt %) 

Chlorite - Oxide Zone 

SiO? 23,50 22,44 23,67 23,21 23,65 23,30 23,20 22,17 22,95
 

Ti02 0,11 0,11 0,03 0,03 0,07 0,04 0,06 0,22 0,20
 

AI20 3 22,39 21,79 21,89 21,99 21,87 22,24 22,13 21,58 22,09
 

FeO' 31,39 32,21 28,90 29,25 31,50 32,15 32,18 32,69 29,93
 

MnO 0,31 0,34 0,30 0,29 0,31 0,27 0,31 0,33 0,32
 

MgO 9,92 9,60 9,85 9,99 10,63 9,88 10,07 9,21 10,34
 

CaO 0,03 0,04 0,01 0,01 0,00 0,00 0,02 0,07 0,03
 

Na20 0,03 0,02 0,03 0,04 0,01 0,02 0,04 0,05 0,05
 

K20 0,03 0,03 0,00 0,02 0,00 0,02 0,01 0,03 0,01
 

Total 87,71 86,58 84,68 84,83 88,04 87,92 88,03 86,35 85,92 

'Total Fe reported as FeO 
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APPENDIX B. Analysis of chlorile (wl %) 

Chlorite - Oxide Zone 

Si02 22,86 22,33 23,03 22,90 22,54 24,67 24,62 24,12 24,27
 

Ti02 0,21 0,18 0,13 0,14 0,16 0,24 0,11 0,10 0,06
 

AI20 3 22,21 21,44 21,56 22,68 22,70 20,70 22,02 21,60 21,84
 

FeO' 30,83 30,42 30,23 30,95 31,66 25,61 25,99 26,18 26,06
 

MnO 0,28 0,26 0,26 0,33 0,32 0,72 0,68 0,75 0,77
 

MgO 9,78 9,31 10,07 10,34 9,90 14,46 13,63 14,16 14,16
 

CaO 0,00 0,01 0,01 0,00 0,00 0,02 0,03 0,01 0,01
 

Na20 0,02 0,02 0,00 0,00 0,01 0,01 0,02 0,02 0,03
 

K20 0,01 0,01 0,02 0,00 0,02 0,08 0,04 0,01 0,03
 

Tolal 86,18 83,98 85,30 87,34 87,32 86,49 87,13 86,94 87,21 

'Talai Fe reported as FeO 
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APPENOIX O. Sample names and location 

# Sampie Eastern (UTM Nad 83) 

2A 680092
 

2B 680165
 

2C 680160
 
2E 680106
 

2F 680100
 

2H 680128
 
4A 677750
 

4B 677672
 

4C 677649
 

40 677691
 

4E 677638
 
4G 677485
 

4H 677468
 

5A 680531
 

5E 680516
 
5F 680482
 

51 680498
 
6A 680874
 

6B 680879
 
60 680878
 

6F 680870
 
6H 680870
 

6J 680854
 
6L 680805
 

6M 680802
 

6M1 680855
 
6M2 680757
 
6M3 680703
 

6N 680811
 

6P 680791
 
6R 680718
 
6T 680723
 

7A 679221
 
7B 679292
 
7C 679159
 
70 679160
 

Northern (UTM Nad 83) 

4987732
 

4987726
 

4987725
 
4987594
 

4987593
 

4987621
 

4992914
 

4992909
 

4992933
 

4992958
 

4992980
 

4992830
 

4992858
 

4993053
 

4993065
 
4993078
 

4992929
 

4993376
 
4993386
 

4993391
 

4993392
 

4993391
 
4993390
 

4993388
 

4993390
 
4993462
 

4993364
 

4993367
 

4993401
 

4993424
 
4993372
 

4993329
 
4995101
 

4995123
 
4995177
 

4995178
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APPENOIX O. Sample names and location 

# Sample Eastern (UTM Nad 83) 

8A 681510
 

8B 681508
 

8C 681503
 
8E 681500
 

81 681441
 

8M 681415
 
8Q 681386
 

88 681334
 

8T 681326
 

8AB 681483
 

8AO 681479
 
8AE 681471
 

8AF2 681449
 

8AG 681450
 
8AH 681451
 
9A 683003
 

9B 683004
 
9C 683005
 

90 683006
 
9E 683010
 

9F 683012
 
9G 683018
 
9H 683031
 
91 683050
 

9J 683052
 

11A 681340
 
11 B 681342
 

11C 681386
 

110 681444
 

11E 681546
 
11 F 681589
 
12B 683445
 

12C 683444
 
120 683443
 
12E 683442
 
12G 683438
 

Northern (UTM Nad 83) 

4994237
 
4994238
 
4994241
 
4994242
 
4994217
 

4994230
 
4994193
 
4994204
 

4994199
 
4994311
 
4994312
 
4994315
 
4994264
 

4994265
 
4994266
 
4993783
 
4993782
 
4993782
 
4993783
 
4993782
 
4993783
 
4993789
 
4993783
 
4993785
 
4993786
 
4996907
 
4996905
 
4996858
 
4996841
 
4996715
 
4996728
 
4996147
 
4996146
 
4996145
 
4996145
 
4996143
 

0.2 125
 



APPENOIX O. Sam pie names and location 

# Sample Eastern (UTM Nad 83) 

13A 683797 

138 683826 

13C 683819 
130 683816 

13E2 683814 
13F 683811 

13G 683809 
13H 683801 
14A 683078 
14C 683075 
140 683071 
14E 683070 
14F 683067 
14G 683066 
14H 683070 
15A 683731 

158 683729 
15C 683722 

150 683718 
17A 684805 
178 684949 
170 684955 
17F 684976 
17G 684980 

17H 684983 
17J 684989 

17K 684943 
19A 684403 
198 684419 
19C 684433 

190 684475 
19E 684495 

19F 684486 
19G 684492 
19H 684517 

191 684554 

Northern (UTM Nad 83) 

4996868 
4996891 
4996897 
4996898 
4996899 
4996899 
4996899 
4996927 

4999281 
4999265 
4999240 
4999239 
4999233 

4999231 
4999208 
4998972 

4998973 
4998976 
4998978 
4998873 
4999015 
4999017 

4999023 
4999019 
4999018 
4999029 
4998955 
5001182 

5001188 
5001238 
5001231 
5001209 

5001204 
5001195 
5001219 
5001205 

0.3 126
 



APPENDIX D. Sample names and location 

# Sample Eastern (UTM Nad 83) 

19J 684587
 
19K 684607
 
19L 684633
 
19M 684670
 
19N 684681
 

190 684693
 
19P 684765
 

22B1 685355
 
22B2 685356
 
22C 685357
 
22D 685369
 
22E 685380
 
22F 685401
 
22G 685416
 
22H 685441
 
28A 683748
 
28B 683771
 
28C 683861
 
28D 683919
 
28E 683966
 
28F 683964
 
28G 684003
 
28H 683818
 
281 683983
 
28J 684009
 
28K 684083
 
28L2 684166
 
28L3 684170
 
28M 684243
 
28P 684321
 

2801 684376
 
2802 684377
 
28S 684436
 
28S1 684452
 
28T 684458
 

Northern (UTM Nad 83) 

5001234
 
5001216
 
5001190
 
5001217
 
5001202
 

5001189
 

5001181
 
5003668
 
5003667
 
5003663
 
5003663
 
5003646
 

5003641
 
5003632
 
5003613
 
4999302
 
4999322
 
4999252
 
4999212
 
4999188
 
4999179
 
4999194
 
4999210
 
4999342
 
4999265
 
4999270
 
4999292
 
4999295
 
4999334
 
4999248
 
4999240
 
4999239
 
4999224
 
4999234
 
4999239
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APPENOIX O. Sample names and location 

# Sample Eastern (UTM Nad 83) 

29A 683633
 

29B 683633
 

29C 683798
 

290 683840
 

29E 683853
 

29F 683891
 

29G 683920
 

30A 684523
 

30B 684522
 

30C 684521
 

300 684519
 

30E 684516
 

31A 684522
 

31B 684541
 

31C 684737
 
310 684766
 

31E 684783
 

31F 684834
 

31G 684962
 
31H 685131
 

311 685181
 

31J 685202
 
31K 685225
 

31L 685268
 

31M 685119
 

31N 685056
 

32A 685132
 

SW-A 685472
 

SW-C 685477
 

SW-C1 685479
 
SW-01 685443
 

SW-F 685832
 

SW-H 685832
 

Northern (UTM Nad 83) 

4998995
 

4999061
 

4998986
 
4998980
 

4998933
 

4998930
 

4998803
 

4999356
 

4999357
 

4999357
 

4999359
 
4999360
 

4999609
 
4999606
 

4999613
 
4999618
 

4999626
 

4999612
 
4999648
 

4999640
 

4999705
 

4999693
 
4999666
 

4999644
 

4999548
 

4999512
 
4999521
 

5000688
 

5000690
 

5000695
 
5000854
 

5001083
 

5001089
 

0.5 128
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APPENDIX E. Oxygen Isotope Results 

Sample o180smow Magnetite o180smow Water 

4D 1,9 9,9 

5G 2,9 10,9 

6M 3,2 11,2 

7B 1,6 9,6 

8N 2,3 10,3 

9D1 3,5 11,5 

11 F 3,2 11,2 

12F 2,8 10,8 

17G 8,5 16,5 

19F 2,9 10,9 

22C 4,8 12,8 

25F 5,4 13,4 

28B 2,6 10,6 

28F 1,9 9,9 

30E 2,7 10,7 

31M 2,8 10,8 

32A 2,4 10,4 

SW-G 3,8 11,8 

Calibration NBS-28 K1 (St. inteL) 
x- 9,69 18,78 
s= 0,09 0,11 
n= 13 21 
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