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Abstract

In this paper, we propose to model the number of insured cars per household. We use queuing

theory to construct a new model that needs 4 di�erent parameters: one that describes the rate

of addition of new cars on the insurance contract, a second one that models the rate of removal

of insured vehicles, a third parameter that models the cancellation rate of the insurance policy,

and �nally a parameter that describes the rate of renewal. Statistical inference techniques allows

us to estimate each parameter of the model, even in the case where there is censorship of data.

We also propose to generalize this new queuing process by adding some explanatory variables

into each parameter of the model. This allows us to determine which policyholder's pro�les

are more likely to add or remove vehicles from their insurance policy, to cancel their contract

or to renew annually. The estimated parameters help us to analyze the insurance portfolio in

detail because the queuing theory model allows us to compute various kinds of useful statistics

for insurers, such as the expected number of cars insured or the customer lifetime value that

calculates the discounted future pro�ts of an insured. Using car insurance data, a numerical

illustration based on a portfolio from a Canadian insurance company is included to support this

discussion.

Key Words: Queuing theory, Poisson process, Lifetime customer value, Count

distribution, Statistical inference
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1 Introduction

In recent years, a value that has gained interest in actuarial science is the lifetime customer value,

see Guillén et al. (2012), Guelman et al. (2014) or Faris et al.(2010) for a general overview. This

is a term from the marketing �eld that allows targeting of long-term clients. In insurance, it is a

value that an insurer can assign to each insured, calculated by discounting all the future pro�ts of

the insured. Its application to the �eld of insurance is particularly recent (see Verhoef and Donkers,

2001), possibly because of the complexity of the actuarial �eld. To calculate the lifetime customer

value of each client, as well as other useful statistics, we propose to model the number of insured

cars per household. We use queuing theory (see Gross et al. 2008 for an overview) to construct a

new model that needs 4 di�erent parameters: one that describes the rate of addition of new cars

on the insurance contract, a second one that models the rate of removal of insured vehicles, a third

parameter that models the cancellation rate of the insurance policy, and �nally a parameter that

describes the rate of renewal. Using regression methods, we also identify insured pro�les that are

more interesting for insurers. A numerical illustration taken from a portfolio of a car insurance data

from a Canadian insurance company is included to support this discussion.

In the second part of the paper, we propose the �rst approach to model the number of insured

vehicles. This includes a process to model the arrival of new vehicles and another process to model

the removal of insured vehicles from an existing insurance contract. A third process to model the

renewal process will also be added to the model. In Section 3, we generalize the model of Section

2 to include a process that models cancellations during the contract. In Section 4, we propose a

method to estimate the parameters of the models, for complete and for censored data. Covariates

representing the characteristics of each household will then be added into each parameter of the

process. In Section 5, we apply the model and calculate several useful statistics, such as the expected

number of insured vehicles or the lifetime customer value. Possibles generalizations of the model

will be discussed in Section 6, while Section 7 concludes the paper.

1.1 De�nition of terms

The term household is used to designate a single customer, or an insured. This household can

include several members (or drivers) and several cars grouped under one annual insurance con-
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tract, which can be renewed each year. The contract represents the document that binds the

insurer with the insured household. In this paper, we focus on the number of cars that the contract

covers and that are owned by the same household. By extension, added cars and removed cars

from the insurance contracts are also analyzed. Finally, at any time during the insurance coverage,

a household can decide to cancel its contract, meaning that all the insured cars are also canceled

accordingly. We call this event a breach of contract or a cancellation.

1.2 Data Used and Notations

The use of queuing theory is based on the di�erent waiting times before a change in the number of

insured cars. We base our research on empirical analyses that come from a Canadian car insurance

database. This database contains general insurance information on each of the 322,174 households

for the period of 2003 to 2007. Note that because of the small length of the analyzed time period,

the data are censored. For each household, we have information on each of its insured cars. We also

have information about new or broken contracts, contract renewal, added or removed cars. Section

4.3 analyzes the database in detail, and describes the insurance data more precisely, particularly

the characteristics of each of these policies.

A graphical analysis of waiting times involved in the modeling is presented. First, in Figure 1.1,

the distribution of the life of an insurance policy (in years) is shown. By the life of an insurance

policy, we mean the time between the e�ective date of a new contract and the date of a non-renewal,

between the e�ective date of a new contract and the date of a cancellation. In the �rst graph of

this Figure, to avoid possible bias, we only used policies that were issued and canceled during the

2003-2007 period. This sample allows us to better understand the data. From the �gure, we can see

that there is a shock at each contract renewal date. Aside from that shock, we can also observe a

decreasing exponential trend in the data. The color code shows that most departures happen when

there is only one insured car on the insurance policy. In Figure 1.1, the time before the addition

of a car on an existing insurance contract is also shown. For this graph, all the data were used.

The last graph of Figure 1.1 uses again all data, and shows the time before a removal of a car on a

policy, which remains in force despite the removal of a car. Again, we can see an exponential trend,

shocks at each contract renewal date, even if these shocks are less important than the ones observed

in the �rst graphs. The major purpose of our project is thus to create a mathematical model that
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Figure 1.1: Life of an insurance policy, time prior to the addition of a car and time prior to removal
of a car
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Figure 2.1: Network graph of a Poisson Process

will be able to approximate those observations.

Let N(t) be a random variable representing the number of elements in a queuing system at time

t. In our case, the number of elements is the number of insured cars owned by a speci�c household.

The probability function of the number of insured cars will be expressed as Pr{N(t) = i} = pi(t).

The probability generating function (PGF) will be expressed as PN(t)(z, t) =
∑∞

i=0 pi(t) × zi, and

its partial derivative with respect to t by:

∂PN(t)(z, t)

∂t
(z, t) =

∞∑
i=0

dpi(t)

dt
× zi. (1.1)

Finally, the conditional probabilities will be represented and noted as p(j,i)(s, t) = Pr{N(t) =

i|N(s) = j}.

2 Modeling the number of vehicles

In this section, we introduce how queuing theory, based on Newell(1982), can be used to model

the number of insured cars. We �rst introduce the Poisson process to model the arrival of a new

vehicle, and we add another process to model the removal of cars from the contract. Fewer details

will be given in this part of the paper because interpreting the result requires only basic knowledge

of queuing theory. Nonetheless, this introduction to queuing theory allows us to explain some tools

that will be used in complex models, such as the one developed in Section 3.

2.1 Addition and removal of vehicles

In a pure birth process, also called the Poisson process and illustrated in Figure 2.1, there is only

one component of arrival, de�ned by a parameter λ. The Chapman-Kolmogorov equation is de�ned

in our context by:
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Figure 2.2: Network graph of a M/M/∞ model

pi(t) =
∞∑
j=0

pj(s)p(j,i)(s, t),

for s < t. We interpret this equation by the fact that a probability can be de�ned by the sum of

all the di�erent paths for a short time period. These equations thus require us to �nd the conditional

probabilities of the system, at some level i at time t+ ∆t, knowing that the process was at the level

j at time t. This is expressed as:

p(j,i)(t, t+ ∆t) =



λ∆t+ o(∆t) when j = i− 1,

1− λ∆t+ o(∆t) when j = i,

o(∆t) when j < i− 1,

0 otherwise,

(2.1)

where lim∆t→0
o(∆t)

∆t = 0. For this �rst model, it can be shown that the probability function can be

expressed as:

pi(t) =
e−λt(λt)i

i!
, (2.2)

which represents the classic Poisson distribution.

To obtain a model that is more realistic, we add a service component (which can also be called a

death component) to the pure birth process. This is illustrated in Figure 2.2. The death component

is supposed to be independent from the birth process. The resulting model is denoted as M/M/∞.

Like the Poisson process, the time between each arrival of a new element follows an exponential

distribution. This feature is represented by the �rst M of the acronym, which means "Markov".

For this model, each element leaves the system after a certain period of time that also follows an

exponential distribution. This new process of the model de�nes the second M . Finally, the last
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symbol ∞ means that the departure process of each insured car can begin before the end of the

departure process of another vehicle.

In other words, we are working with a dynamic modeling of a population that grows at a constant

rate λ, and dies at a rate iµ, with i representing the number of elements in the population at a

speci�c time. In our context, the population is the number of cars in the household and therefore

the new cars are added to the insurance contract at a rate λ, while vehicles leave the same insurance

contract at an individual rate of µ. For this model, the conditional probabilities are:

p(j,i)(t, t+ ∆t) =



λ∆t+ o(∆t) when j = i− 1,

1− (λ+ iµ)∆t+ o(∆t) when j = i,

(i+ 1)µ∆t+ o(∆t) when j = i+ 1,

o(∆t) otherwise.

For this well-known model in queuing theory, it can be shown that the probability function is

expressed as:

pi(t) =

min(i,a)∑
k=0

e−(1−e−µt)λ/µ [(1− e−µt)λ/µ]i−k
(i− k)!

×
(
a

k

)
e−µtk(1− e−µt)a−k. (2.3)

The probability generating function is expressed as:

PN(t)(z, t) =
[
(z − 1)e−µt + 1

]a
e
λ
µ(1−e−µt)(z−1)

(2.4)

where N(0) = a, which means that the initial number of insured cars (at time 0) is a.

2.2 Renewal of the vehicles

It is possible to add �exibility to the modelM/M/∞ by generalizing the component service process.

Such a generalization means that the secondM of the acronym should be replaced by a G (meaning

general distribution). The proposed generalization allows us to incorporate a shock at the renewal

time for each car. Indeed, as empirically shown in Figure 1.1, there is a higher probability that a
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Figure 3.1: Network graph of a queuing model allowing cancellation of the insurance contract

car will be removed from the insurance contract at its annual renewal.

Based on Benes(1957a), the model is constructed by separating the process into several compo-

nents modeling the number of cars. Indeed, we can suppose that the process N(t) can be expressed

as N(t) = Z(t)− Y (t). In this case, the process Z(t) will count the number of arrivals of new cars

in the system until time t, and the process Y (t) will count the number of departures of cars from

the insurance contract until time t.

When N(0) = 0, it can be shown that the probability function can be expressed as:

Pr(N(t) = i) =
(λtqt)

ie−qtλt

i!
, (2.5)

from which we recognize a Poisson distribution with parameters λtqt. The parameter qt can be

interpreted as a survival probability, and can be de�ned as:

qt =

ˆ t

0

S(x)

t
dx,

where S(·) is the survival function of the service time, which corresponds in our case to the time

since the car is insured. For a car insurance application, for example, we could include a shock that

would happen at each renewal anniversary using the following function:

S(x) = e−µxpbxc, (2.6)

where x is the age of the policy, and p represents the probability of renewal of the insurance contract.
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3 Model with a period of inactivity

It would be interesting to generalize the model to include a possible cancellation of the contract,

meaning that all vehicles insured in the same household leave the insurance company simultaneously.

This model has to be constructed by adding a Poisson process that allows moves from levels n ≥ 1

to 0 at a rate γ, recreating the e�ect of a cancellation. Figure 3.1 illustrates this model. The added

process is supposed to be independent from the other ones. By studying this new model, we see,

however, that it generates a conceptual problem. Indeed, the model allows the possibility that a

new vehicle is added to an insurance contract even if the insurance contract has not had insured

vehicles (state 0) for a while. This is counterintuitive: it seems more logical to believe that a policy

without insured vehicles is simply cancelled. In this sense, the state 0 of this model should simply

be an absorbent state.

However, further empirical analysis of the data points to a slightly more complex situation.

Indeed, it sometimes happens that an insurance policy without an insured car is not cancelled. It

means that sometimes a new vehicle is added to an existing insurance contract without insured cars.

In our data, this happened 1,340 times, and the average time spent in the state 0 is almost half a

year (0.4789).

This represents a form of inactivity of the contract, which allows reactivation of the contract

when a new vehicle is added to the contract. One could think of situations such as storage of the

last vehicle of the policy, the presence of another type of insurance (home or other) associated with

an automobile policy and preventing the complete cancellation of the policy. There are also other

more speci�c explanations for this situation. In this sense, empirically, we cannot consider the state

without an insured vehicle as an absorbent level. However, the presence of an absorbent level that

represents the �nal and decisive cancellation of a contract must be considered. This state will not

be the one corresponding to a contract without an insured car, but a slightly di�erent one.

We therefore propose a model such as the one shown in Figure 3.2. In this model, a new state

is created and identi�ed as 0∗. This new level is an absorbing state from which it is no longer

possible to add vehicles1. In other words, the level 0∗ is accessible only in cases where the contract

is cancelled. It is thus noted that the passage to 0∗ occurs at a rate γ for each level. Although we will

1If the insured cancels its contract and later wants to be covered again, insurers will often create a new insurance
contract.
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Figure 3.2: Network graph of a queuing model with absorbent state 0∗

explore this situation in more detail in Section 4, we would like to highlight a conceptual di�culty

with this new model. In the case of a policy with only one vehicle, empirically, the cancellation of

the last vehicle is similar to the cancellation of the contract. In this sense, it is not clear whether the

policy has been canceled (and enters the absorbing state 0∗) or if the insurance contract is simply

in a period of inactivity (state 0). We will propose a solution to this problem later.

The construction of this new model is complex and requires new notations. Thus, in addition

to N(t), which represents the number of insured cars at time t, the random binary variable M(t)

is now introduced. This r.v. de�nes the life or death of the process at time t. In our context, a

process is alive at time t, or M(t) = 1, when the insurance contract is in force, or in other words,

when the contract has not been broken. A live process without insured vehicles is simply considered

inactive, and at the state 0. Conversely, a dead process, or M(t) = 0 means that the household has

cancelled its insurance contract and the absorbing state 0∗ has been reached.

3.1 Modeling

For this model, Chapman-Kolmogorov equations should have been used to �nd the transition prob-

abilities, from which di�erence-di�erential equations can be found. We instead use a simpler form of

mathematical development. We �rst make the assumption that the time process related to the ran-

dom variable M(t) is exponentially distributed. In other words, we suppose that the time between

the beginning of the contract and the end of the contract is U ∼ Exponential(γ). Consequently, we

have M(t) = 0 when t > U and:

Pr(M(t) = 1) = e−γt. (3.1)

We can then de�ne the number of insured cars for both situations:
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1. The caseM(t) = 1: As long as the household is insured, the processes of adding and removing

vehicles are active. As such, we can model the number of insured cars N(t) with theM/M/∞

queuing model seen previously.

2. The case M(t) = 0: When the cancellation occurs, the number of insured cars is 0. We then

have Pr(N(t) = 0|M(t) = 0) = 1.

Consequently, the joint PGF for N(t) and M(t) can easily be developed:

PN(t),M(t)(z, y, t) =
1∑

m=0

∞∑
i=0

Pr(M(t) = m,N(t) = i)ymzi

=
1∑

m=0

∞∑
i=0

Pr(N(t) = i|M(t) = m) Pr(M(t) = m)ymzi

= Pr(M(t) = 0) +
∞∑
i=0

Pr(N(t) = i|M(t) = 1) Pr(M(t) = 1)yzi

= 1− e−γt + e−γtyPN(t)(z, t)

= 1− e−γt + e−γty
(
(z − 1)e−µt + 1

)a
e

(z−1)(1−e−µt)λ
µ . (3.2)

The PGF of the M/M/∞ model can be recognized from the right part of the equation, where

equation (3.1) is added.

3.1.1 Adding Shock at the Renewal

At each policy anniversary, the insured has to renew his or her insurance contract. It is possible to

modify the probability generating function by adding a Bernoulli trial that models this situation.

To do this, equation (3.1) is modi�ed to add a renewal probability p:

Pr(M(t) = 1) = e−γtpbtc. (3.3)

The variable t still represents the time in years, while the notation b·c is the �oor function. At

each policy anniversary for p < 1, this function causes an increase in the probability of cancellation.
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It is easy to rewrite equation (3.2) with this new de�nition to have the following result:

PN(t),M(t)(z, y, t) = 1− e−γtpbtc + e−γtpbtcy
(
(z − 1)e−µt + 1

)a
e

(z−1)(1−e−µt)λ
µ . (3.4)

which now represents the �nal process that we proposed to model the number of insured cars.

4 Statistical Inference

It is possible to estimate parameters λ, γ, µ and p of the model by maximum likelihood. The estima-

tion technique requires �nding the joint probability density, and to adjust it based on observations

of the database. Some assumptions must be made to be able to use the information available from

the database. We will �rst summarize the steps in estimating the parameters of a simpli�ed model

where it is possible to distinguish each event. Then, by introducing data censorship and explanatory

variables, the model will be adapted and generalized.

4.1 Complete Data

4.1.1 Notations

To estimate all parameters of the new model, a list of variables that are used in the likelihood

function must be presented. All possible events observed during the life of the insurance policy will

be noted as:

1. Type 1 event, which represents an addition of a car on the insurance contract. The random

variable E represents the total number of events of this type (excluding the cars already

insured at the beginning of the �rst observed contract);

2. Type 2 event, which represents a cancellation of the insurance policy at the policy anniversary

date. The random variable Q is an indicator variable of this type of event. In other words,

Q = 1 if there is no contract renewal;

3. Type 3 event, which represents a cancellation of the insurance policy at a di�erent time than

the anniversary of the policy. The random variable A is an indicator variable of this type of

event;
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4. Type 4 event, which represents a removal of a car from the insurance policy. The random

variable S represents the total number of events of this type.

Thus, the total number of events, noted as K, is equal to the sum of all the previous elements,

such as K = E + A + Q + S. We also propose notations for all the variables specifying time

information about the insurance contract:

1. tj , the time of occurrence (in years) of the jth event a�ecting the number of insured cars;

2. t̃j the time period (in years) between the (j − 1)th and the jth event, where t̃j = tj − tj−1,

with t̃1 = t1.

3. T , the number of years the insurance contract was alive or inactive, where T =
∑K

j=1 t̃j and

hence T = tK ;

4. Finally, we de�ne respectively by Ψ1,Ψ2,Ψ3 and Ψ4 the random variables that de�ne the time

before the occurrence of an event of type 1,2,3 or 4.

We then have:

1. Nj , a variable that counts the number of cars immediately before the jth event;

2. V , the sum of the exposure time (in years) of all cars in a household so that V =
´ T

0 N(t)dt =∑K t̃jNj .

4.1.2 Likelihood function

The likelihood functions are developed based on the work of Benes(1957b) for the M/M/∞ model.

To estimate the parameters, we will build the conditional likelihood function based on the initial

state. In this sense, we are not interested in the number of cars already insured in the portfolio

(we work with this initial assumption), but only on processes that a�ect the number of cars in

the future. Under the assumptions in the design of the system, these variables were de�ned as

Ψ1 ∼ Exponential(λ),Ψ2 ∼ Exponential(µ),Ψ3 ∼ Exponential(γ) et Ψ4 ∼ Geometric(p).

To de�ne the joint distribution of all events for a single household, we have to analyze all possible

cases. All processes are supposed to be independent, which facilitates decomposition of the model.
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For example, knowing that the �rst event is the addition of a new vehicle on the insurance contract

(type 1 event), observed at time t̃1, we obtain:

Pr(Ψ1 = t̃1,Ψ2 > t̃1,Ψ3 > t̃1,Ψ4 > t̃1) = λe−λt̃1e−N1µt̃1e−γt̃1ph(t̃1), (4.1)

where h(t) is a function that counts the number of times a speci�c household was in a renewal

position before time t. This equation was developed using the properties of the �rst event of a joint

distribution of exponentials. Then, by a similar development, it is possible to �nd the probability

of events 2,3 or 42:

Pr(Ψ1 > t̃1,Ψ2 = t̃1,Ψ3 > t̃1,Ψ4 > t̃1) = e−λt̃1N1µe
−N1µt̃1e−γt̃1ph(t̃1); (4.2)

Pr(Ψ1 > t̃1,Ψ2 > t̃1,Ψ3 = t̃1,Ψ4 > t̃1) = e−λt̃1e−N1µt̃1γe−γt̃1ph(t̃1); (4.3)

Pr(Ψ1 > t̃1,Ψ2 > t̃1,Ψ3 > t̃1,Ψ4 = t̃1) = e−λt̃1e−N1µt̃1e−γt̃1ph(t̃1)−1(1− p). (4.4)

Thereafter, knowing that exponential processes do not have memory, it is possible to calculate

the product of all K events to obtain the joint distribution of all events of a single household:

f(E,A, S,Q, T, V |λ, γ, µ, p) = λEe−λ
∑K t̃j

(
S∏
Ns

)
µSe−µ

∑K Nj t̃jγAe−γ
∑K t̃j (1− p)Qp

∑K h(t̃j)−Q

∝ λEγAµS(1− p)Qe−(λ+γ)T e−µV pbT c−Q, (4.5)

where the constant terms have been removed from the second equation because they are not used

in computing of the maximum likelihood method. For all Φ households, the loglikelihood function

can be expressed by:

` =

Φ∑
i=1

Ei lnλ+Ai ln γ + Si lnµ+Qi ln(1− p) + (bTic −Qi) ln p− (λ+ γ)Ti − µVi, (4.6)

2This technique is slightly biased by the fact that it does not consider the possibility of cancellation of the insurance
contract at the renewal date. However, the impact is minimal because it corresponds to approximately 1/365.
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where the subscript i identify each household. Finally, by maximizing the loglikelihood function,

we can obtain the following estimators:

λ̂ =

∑ΦEi∑Φ Ti
, γ̂ =

∑ΦAi∑Φ Ti
, µ̂ =

∑Φ Si∑Φ Vi
, p̂ =

∑ΦbTic −Qi∑ΦbTic
.

4.2 Incomplete Data

Given that the time horizon of the sample is only 5 years, it is not always possible to observe

the whole lifetime of an insurance policy. Consequently, the data that we are working with are

necessarily censored and it is not possible to perform the estimation techniques based on complete

data. To estimate the parameters correctly, important assumptions must be made. In this sense,

we note a new variable, Ω, the observation date of the database. For example, in the case of our

empirical analysis, this date is December 31, 2007.

Thus, we do not know what happened to a policy that had not been canceled before that date.

Maybe the policy was canceled in 2008, or is still active in 2014. For those contracts, we must add to

the likelihood function the time period between the last observed event K and Ω, i.e. a probability

function that indicates that no events occur during that time interval. This corresponds to the joint

probability of survival of 4 events. It is therefore fair to say, by independent random variables, that:

Pr(Ψ1 > Ω− tK ,Ψ2 > Ω− tK ,Ψ3 > Ω− tK ,Ψ4 > Ω− tK)

= Pr(Ψ1 > Ω− tK) Pr(Ψ2 > Ω− tK) Pr(Ψ3 > Ω− tK) Pr(Ψ4 > Ω− tK)

= e−λ(Ω−tK)e−NKµ(Ω−tK)e−γ(Ω−tK)ph(Ω−tK). (4.7)

4.2.1 Inactive vs Canceled

When there is censorship, we must distinguish between inactive insurance contracts (state 0) and

canceled insurance contracts (state 0∗). Indeed, in cases where only one vehicle was insured at time

tK , i.e. NK = 1, an event of type 3 and an event of type 4 looks similar.
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Let us �rst note this situation by a new indicator variable AS(Ω− tK) = AS = 1, meaning that

this unknown state has a duration of Ω − tK . Because we are working with exponential random

variables, we can sum equations (4.2) and (4.3). We obtain the probability that the household

enters the unknown state at time tK . This probability is expressed by e−(λ+µ+γ)t̃Kph(t̃K)(µ + γ),

which one may incorporate in the likelihood function.

By the properties of the exponential distribution, the probability that the household is in state

0∗ (event of type 3) or in state 0 (event of type 4) are respectively:

Pr(M(tK) = 0|AS = 1) =
γ

γ + µ
(4.8)

Pr(M(tK) = 1, N(tK) = 0|AS = 1) =
µ

γ + µ
. (4.9)

It is possible to include the time Ω − tK in the likelihood function to know which event between

type 3 and 4 is the most probable.

When no possibility of renewal is possible between time tk and Ω, 3 situations are possible at

time tK :

1. An event of type 3 occurred at tK , which implies that the insurance policy is canceled;

2. An event of type 4 occurred at tK and no other event has occurred up to Ω. This implies that

the insurance policy is inactive.

3. An event of type 4 occurred in tK and an event of type 3 occurs during the period (tK ,Ω),

thus canceling the insurance policy.

Instead of calculating each of these probabilities, it is easier to calculate the complementary

probability. This complementary probability corresponds to a single event: the occurrence of an

event of type 4 at time tK followed by an arrival during the period (tK ,Ω). This probability can be

calculated as follows:

Pr(M(tK) = 1, N(tK) = 0|AS = 1) Pr(Ψ1 < min(Ψ3,Ω− tK)) =
µ

γ + µ

(
1− e−(γ+λ)(Ω−tK)

) λ

λ+ γ
.

(4.10)
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This corresponds to the product of three probabilities: the probability that an event of type 4

occurs at tK , the probability that events of type 1 or type 3 occur before Ω and the probability that

this last event is a vehicle entrance (type 1 event). It is important to note that this equation should be

used only in cases where there is no possibility of renewal in the unknown period. Consequently, we

need to generalize this equation to include each contract renewal in the calculation of the probability

of remaining in the unknown state. To do this, it is necessary to separate the probability of arrival

of a vehicle according to each year.

But �rst, several elements must be explained in detail. First, it should be noted that time tK ,

corresponding to the moment when the status of the insured becomes unknown, does not necessarily

match the time of the policy renewal. This means that the time period before the �rst renewal, and

the last period before Ω (if di�erent) are less than one year apart.

Consequently, if there is at least one renewal during the unknown period Ω− tK , a way to write

the unknown time part of the year before the �rst renewal is 1 − {tK}, where {·} is the fractional

part function. Similarly, the time part of the year before Ω can be written as {Ω}, and the total

number of renewals will be bΩc − btKc = R. We then have:

Pr(Ψ1 < min(Ψ3, 1− {tK}))︸ ︷︷ ︸
Before �rst renewal after tK

+ Pr(min(Ψ3,Ψ1,Ψ4) > 1− {tK})× Pr(Ψ1 < min(Ψ3, 2− {tK})|min(Ψ3,Ψ4,Ψ1) > 1− {tK})︸ ︷︷ ︸
Between the �rst and second renewal after tK

+ . . . (4.11)

This equation can be understood as the sum of many possibilities occurring between each re-

newal. The �rst element is simply the probability that an event E occurs before the �rst renewal

after tK . The second element of the sum is also the probability that an event E occurs, but be-

tween the �rst and the second renewal after tK . In this case, the probability must also consider

the fact that the insurance policy should have been renewed at the �rst renewal after tK . All other
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situations, between potential renewal j and j + 1, for j = 3, ... must also be calculated, so that:

Pr(Ψ1 < min(Ψ3,Ψ4,Ω− tK)|R ≥ 1)

=
λ

γ + λ

(
1− e−(γ+λ)(1−{tK})

)
+

λ

γ + λ
e−(γ+λ)(1−{tK})p

(
1− e−(γ+λ)

)
+ . . .

+
λ

γ + λ
e−(γ+λ)(R−{tK})pR

(
1− e−(γ+λ){Ω}

)
=

λ

λ+ γ

[(
1− e−(γ+λ)(1−{tK})

)
+ e−(γ+λ)(1−{tK})p

(
1− e−(γ+λ)

) 1−
(
pe−(γ+λ)

)R−1

1− pe−(γ+λ)

+e−(γ+λ)(R−{tK})pR
(

1− e−(γ+λ){Ω}
)]
.

where a simpli�cation is done using the properties of geometric series. Cases when R = 0 and R > 0

can be combined to obtain:

Pr(Ψ1 < min(Ψ3,Ψ4,Ω− tK))× Pr(M(tK) = 1, N(tK) = 0|AS = 1)

=
µ

µ+ γ

λ

γ + λ

[
1(R = 0)

(
1− e−(γ+λ)(Ω−tK)

)
+ 1(R ≥ 1)

[(
1− e−(γ+λ)(1−{tK})

)
+e−(γ+λ)(1−{tK})p

(
1− e−(γ+λ)

) 1−
(
pe−(γ+λ)

)R−1

1− pe−(γ+λ)

+e−(γ+λ)(R−{tK})pR
(

1− e−(γ+λ){Ω}
)]]
≡ G(tK ,Ω). (4.12)

The case where p = 1 gives the result shown by equation (4.10). Finally, for the sake of simpli�ca-

tion, as already noticed, we calculated the complementary probability.

Following the correction of the model to include situations where it is di�cult to distinguish

between inactive and canceled insurance policy, the likelihood function (4.5) must be adjusted by

adding the term 1−G(tK ,Ω):

L(λ, γ, µ, p) ∝ e−(λ+γ)T e−µV λEµSγA(1− p)QpbT c−Q [(µ+ γ)(1−G)]A
∗
, (4.13)

where A∗ = 1 if the insured is in the unknown state. Using the logarithm of this function, and

summing for all households of a given portfolio, it becomes possible to estimate the four parameters

of models, λ, γ, µ et p.
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Car Arrival Cancellation Car Removal Renewal
λ γ µ p

0.0730 (0.0003) 0.0400 (0.0003) 0.0828 (0.0003) 0.9179 (0.0003)

Table 4.1: Parameters Estimations (std. err.)

4.3 Numerical Applications

The model was applied to the insurance dataset described in Section 1.2, and all 4 estimated parame-

ters appear in Table 4.1. The value of λ̂means that, for an active contract, at each 0.07303−1 = 13.69

years in average, a new car will be added to the contract. The value of µ̂ means that each car has

an average life of 0.08277−1 = 12.08 years into an insurance contract. Note that the arrival rate of

cars is not enough to compensate for the departure rate of cars because λ̂ < µ̂. Note also that the

annual renewal rate is about 92 % and that the probability of cancellation is approximately equal to

4%. For the insurer analyzed in this paper, arrival of new insureds would then be needed to ensure

long-term pro�tability.

4.3.1 Covariates

Intuitively, we know that some household pro�les are more likely to add or remove cars on their

insurance contracts. Similarly, we may think that some pro�les cancel more than others or that

certain types of policyholders have a lower or higher rate of renewal. Thus, the addition of covariates

into each parameters of the queuing process seems justi�ed.

Covariates selected to de�ne the vector Xi of each household are provided in Table 4.3.1. The

e�ective dates of the insurance contract were used to show the stability of households insuring in

July. Even if the characteristics of a household can change over the year, to simplify, only the

characteristics observed in the �rst contract are considered. We consider that the e�ect is minimal,

because the time horizon of the database is quite short, and most households do not change their

risk characteristics over the year. However, future research might improve the modeling.

A link function g(Xiβ) is then associated with each parameter, where β is the vector of param-

eters to be estimated. In our model, the parameters satisfy λ, γ, µ ∈ R+, consequently a logarithmic

link function is chosen because this link function allows parameters to be always positive. Moreover,

because the parameter that models the renewal probability must satisfy p ∈ [0, 1], we use the logit
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Variable Description

X1 equals 1 if the household comes from the general market (as opposed to group insurance)
X2 equals 1 if the household has at least one rented car
X3 equals 1 if the insureds are not married
X4 equals 1 if the household is with the insurance company for less than 9 years
X5 equals 1 if the e�ective date of the insurance contact is between January and July
X6 equals 1 if the e�ective date of the insurance contact is in July
X7 equals 1 if the e�ective date of the insurance contact is on the �rst day of a month

Table 4.2: Binary variables summarizing the information available about each household

Parameters βλ βγ βµ βp

β0 -2.494 (0.015) -3.709 (0.039) -2.726 (0.014) 2.769 (0.019)
β1 -0.264 (0.009) -0.070 (0.019) 0.122 (0.009) -0.152 (0.010)
β2 -0.142 (0.011) · -0.048 (0.011) 0.092 (0.013)
β3 -0.454 (0.009) 0.214 (0.018) 0.410 (0.008) -0.246 (0.009)
β4 0.201 (0.014) 0.677 (0.038) 0.130 (0.013) -0.399 (0.017)
β5 · · · 0.137 (0.009)
β6 -0.098 (0.012) -0.181 (0.029) -0.034 (0.012) 0.400 (0.016)
β7 -0.129 (0.009) -0.647 (0.021) -0.129 (0.009) 0.089 (0.010)

Table 4.3: Estimated parameters for the process with covariates

link, i.e. pi =
exp(Xiβp)

1+exp(Xiβp) . The estimated values of the vector parameters β are shown in Table 4.3.

The objective of an insurer should be to maximize the number of cars insured at time t. In

this case, we are looking for a high value of parameters λ and p, combined with low values for the

other parameters µ and γ. The results suggests that some covariates have a great impact, such as

marital status, or X6 identifying insured whose e�ective date is July 1st. In addition, policyholders

renewing their insurance contract on the �rst of each month also o�er increased stability. Finally, as

expected, the covariate X4, which identi�es insured with the insurance company for less than 9 years,

shows higher loyalty to their insurer. To test whether the explanatory variables are statistically

signi�cant, a Wald test was performed according to a con�dence interval of 95% for each parameter.

Consequently, β5 was not included in βλ, βγ and βµ and β2 was not included in βγ .

5 Analysis

In this section, applications are presented using the estimated parameters found by regression in

the previous section and shown in Table 4.3. Thus, for example, even if we are working with λ̂, γ̂,
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Parameter X1 X2 X3 X4 X5 X6 X7

Household A 1 0 1 1 0 0 0
Household B 1 1 1 0 0 0 0
Household C 0 0 1 0 0 0 1
Household D 1 1 0 0 0 0 0
Household E 0 1 0 0 0 1 1

Table 5.1: Covariates of each pro�le

Parameter λ γ µ p

Household A 0.0492 0.0557 0.1270 0.87795
Household B 0.0349 0.0283 0.1063 0.92154
Household C 0.0460 0.0159 0.0868 0.93163
Household D 0.0550 0.0228 0.0705 0.93756
Household E 0.0570 0.0107 0.0530 0.96608

Table 5.2: Parameter values for each pro�le

µ̂ or p̂, for simplicity, we will note those parameters by λ, γ, µ and p.

We selected 5 pro�les to represent the impact of market segmentation. Indeed, given that there

are 96 possible pro�les, only some typical insured will be used to show the results of our analyses.

The �rst selected pro�le is the best type of household E in terms of expected insured cars, while

the worst pro�le corresponds to household A. For illustration, we also used 3 average types (B, C,

D). Table 5.1 expresses each pro�le in terms of their covariates.

We can see that the only di�erence between household types B and D lies in marital status.

As we can see by the results shown in Table 4.3, this covariate has a signi�cant impact on each

parameter of the model. In Table 5.2, the value of each parameter λ, γ, µ and p is shown for each

pro�le.

5.1 Expected number of insured cars

Using the probability generating function of the complete process presented in Section 3.1.1, inter-

esting properties can be found. To simplify notations and computations, we will use the variable

H(t) as the number of insured cars from an active or inactive insured, i.e. H(t) = M(t) × N(t).

Knowing that Pr(X = n) = dnP (z=0)
dzn , we can compute the expected number of insured cars H(t)

by using:
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E[H(t)] =
∂PN(t),M(t)(z = 1, y = 1, t)

∂z
=

∞∑
i=0

ip
(1)
i 1i−11.

We compute the expected value for our process by using equation (3.4). We �rst took the

derivative in respect to z:

∂PN(t),M(t)(z, t)

∂z
=

∂
[
1− e−γtpbtc

(
1−

(
(z − 1)e−µt + 1

)a
ye

(z−1)(1−e−µt)λ
µ

)]
∂z

= e−γtpbtc
(
(z − 1)e−µt + 1

)a−1
ye

(z−1)(1−e−µt)λ
µ

×
[
ae−µt +

(
(z − 1)e−µt + 1

) (
1− e−µt

) λ
µ

]
. (5.1)

After, setting z = 1 and y = 1, the expected value can be found:

E[H(t)] =
∂PH(t)(z = 1, t)

∂z
= e−γtpbtc

(
ae−µt +

(
1− e−µt

) λ
µ

)
. (5.2)

With similar computations, other moments of the distribution can be found, such as the variance

or higher moments. Those computations can also be applied to all the other probability generating

functions shown in the paper.

For each pro�le, the expected number of insured cars has been computed. The resulting function

is shown in Figure 5.1. For illustration, we set the value c = 0, meaning that the insureds are at the

beginning of their contract, and that the next renewal will be in one year. In the Figure, we can

clearly see the shock of each contract renewal, modeled by the parameter p. Numerical values can

be found in Table 5.3, where the expected number of insured cars after 5 years, i.e. just after the

renewal, is shown. We see that the initial number of insured cars linearly increases the expected

value.

The results point to a large di�erence between each pro�le, where for example, household E

seems to be much more advantageous for insurers than household A. Consequently, we believe that

an insurer could adapt its marketing e�orts to target certain types of insureds, in this case households

of type E instead of household of type A. Indeed, because they stay longer in the company, insurers

should be able to o�er discounts to some insured pro�les that generate lower administrative costs

because they stay with the company longer.
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Figure 5.1: Expected number of insured cars at time t

Initial number of insured cars (a) 1 2 3 4

Household A 0.281 0.490 0.700 0.909
Household B 0.417 0.756 1.096 1.435
Household C 0.541 0.961 1.381 1.801
Household D 0.604 1.058 1.513 1.967
Household E 0.812 1.424 2.036 2.648

Table 5.3: Expected number of insured cars after 5 years
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5.2 Discounting risk exposures

The discounted monetary value of a household can be found by calculating the present value of cash

�ows in the future. In marketing terms, this result is called customer lifetime value. This value is

analyzed in several articles, for example Donkers et al.(2007), which compares di�erent calculation

methods, Guillén et al. (2012) and Guelman et al. (2014). In our case, we will assume that the

insurance company makes a $1 pro�t for each one-year car exposure. This assumption can easily

be modi�ed to be more realistic. We also use an instant discount rate of δ. Therefore, to calculate

the customer lifetime value, it is necessary to calculate the present value of future exposure until

time T using a continuous δ discount rate. The customer lifetime value will be denoted by ωT , and

is computed by integrating the variable H(t) such that:

ωT =

ˆ T

0
H(t)e−δtdt

= lim
n→∞

T

n

n∑
i=1

H

(
iT

n

)
e−

δiT
n , (5.3)

by using Riemann sums. The expected value can be easily calculated such as:

E(ωT ) = lim
n→∞

T

n

n∑
i=1

E

(
H

(
iT

n

))
e−

δiT
n

=

ˆ T

0
E(H(t))e−δtdt. (5.4)

In Table 5.4, we show the expected value of each household if we suppose that the household

has two insured cars at time t = 0. In the long term, the di�erences between household pro�les

become apparent. Indeed, household E is on average 2.5 times more pro�table after 20 years than

household A.

Classically, in the marketing literature, it is uncommon to calculate the customer lifetime value

over a very large time horizon. However, we found it useful to compute this result because it allows

us to obtain simple equations. Using equation (5.3), we can �nd the total pro�t for each household

when T goes toward in�nity. De�ne this value as ω ≡ limT→∞ ωT . Its expectation can be calculated
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Number of years (T ) 1 5 10 20

Household A 1.833 5.468 6.720 7.122
Household B 1.869 6.359 8.581 9.731
Household C 1.904 7.003 10.104 12.237
Household D 1.917 7.286 10.823 13.506
Household E 1.946 8.218 13.553 19.433

Table 5.4: Customer lifetime value for households having two insured cars at time t = 0, with a 2%
discount rate

by:

E(ω) =

ˆ ∞
0

E(H(t))e−δtdt

=

ˆ ∞
0

e−(γ+δ)tpbtc
(
ae−µt +

(
1− e−µt

) λ
µ

)
dt

=
∞∑
i=0

ˆ i+1

i
e−(γ+δ)tpi

(
ae−µt +

(
1− e−µt

) λ
µ

)
dt

=
∞∑
i=0

a

(
e−i(γ+δ+µ) − e−(i+1)(γ+δ+µ)

)
γ + δ + µ

pi +

(
e−i(γ+δ) − e−(i+1)(γ+δ)

)
λ

(γ + δ)µ
pi

−
(
e−i(γ+δ+µ) − e−(i+1)(γ+δ+µ)

)
λ

(γ + δ + µ)µ
pi

=

(
1− e−(γ+δ+µ)

) (
a− λ

µ

)
(γ + δ + µ)

(
1− e−(γ+δ+µ)p

) +
(1− e−(γ+δ))λ

(γ + δ)µ(1− e−(γ+δ)p)
, (5.5)

where a is the number of insured cars at time t = 0. The numerical results, shown in Table

5.5 3 , show a great disparity between the best and worst households. Consequently, following our

assumptions, we can see once again that an insurance company should target policyholders having

the covariates of household E. This analysis is based on a $1 per household pro�t. This can be

generalized in a pro�t that can be a proportion of the premium. Moreover, using this model and

an economic model incorporating the elasticity of the price, the premium can be set as a function

of future pro�ts.

3We made an approximation with covariate x4 that we kept �xed, but that should change over time. This is an
approximation done only for household A.
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Number of insured cars at time t = 0, (a) 1 2 3 4

Household A 3.964 7.161 10.358 13.555
Household B 5.588 9.992 14.395 18.799
Household C 7.661 13.011 18.361 23.711
Household D 8.782 14.586 20.390 26.194
Household E 16.130 24.735 33.340 41.945

Table 5.5: Customer lifetime value, with a 2% discount rate

6 Discussion

As mentioned previously, numerical results of our empirical study suggest that an insurer should pay

more attention to some households than to others. We wanted to introduce to the actuarial literature

queuing processes that are realistic and directly applicable to model risk exposures in insurance,

but it is important to understand that these conclusions were based on some assumptions of our

model.

In the previous section of the paper, we mentioned that the assumption of the pro�t component

of the premium should be generalized to be more realistic. Other changes are also possible. The

explanatory variables should be more dynamic to re�ect the change in household characteristics

over time. For example, the covariate modeling the time insured within the company (x4) should

logically change over the year. For example, we could add claims experience to the model. This

could improve the �t of the model, mainly for parameter p, which represents the renewal rate.

Indeed, we intuitively believe that the insured's behavior will not be the same if the insured �les a

claim during a year. This change in behavior would probably be related to a premium increase. In

this sense, in such a generalization of the model a system of experience rating could be introduced.

The hunger for bonus phenomenon (see Lemaire 1976, or Boucher et al. 2009) should also be added

to obtain a more useful model and a more realistic approach.

Other interesting generalizations of the model are also possible. As mentioned by an anonymous

referee, dependence between the four processes used the model should be added in a future modeling.

For example, dependence between the cancellation rate and the renewal date seems logical. Indeed,

an insured who is aware of the prices on the insurance market should have a higher probability of

changing insurers during an insurance term and upon renewal. Similarly, it seems logical to believe

that an insured who adds a car on his insurance contract will be more likely to cancel one of the
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other vehicles. More generally, an insured who adds many new cars on his or her contract should

also remove many vehicles. Other kinds of dependence between processes are possible. However,

even if the dependence structure seems to be obvious, the addition of covariates in the model should

diminish the impact of such dependence.

Even if the inclusion of dependences between the processes can be an interesting generalization of

the model, we think that simpler generalizations of the model should be more useful. For example,

the use of other waiting time distributions (gamma instead of the exponential distribution, for

example) to model the processes should be envisioned. Other uses of the model proposed in the

paper, to be used with other lines of business (such as home insurance or group insurance) should

also be interesting avenues. Mixing several lines of business can also be considered.

7 Conclusion

We wanted to model the number of insured cars for each household. Starting with a simple Poisson

process, it is possible to generalize many types of queuing models. The model proposed in this paper

can be seen as a generalization of the M/M/∞ process. We add a new death level to the system,

which allows the possibility of cancellation or non-renewal of contracts. Justi�ed by empirical data,

we also propose a distinction between a canceled policy and an inactive insurance contract.

The proposed new model needs 4 parameters: one parameter that models the rate of addition

of new cars on the insurance contract, a second parameter that models the rate of removal of

insured vehicles, a third parameters that models the cancellation rate of the insurance policy, and

�nally a parameter that describes the rate of renewal. Statistical inference techniques allowed us

to estimate each of these parameters, often by using the properties of the exponential distribution,

and by conditioning on all possible events. Finally, because we worked with censored data, we

have developed a way to estimate the parameters in the case where it is not possible to distinguish

between the inactive contracts and the canceled insurance contracts.

We also proposed to generalize this new queuing system by adding some explanatory variables

into each of the 4 parameters of the model. It was then possible to segment the portfolio and

to determine which policyholders' pro�les are more likely to add or remove vehicles from their

insurance policy, cancel their contract or renew annually. The estimated parameters obtained help
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us to analyze the insurance portfolio in detail because we developed various kinds of useful statistics

for insurers, such as the expected number of insured cars or customer lifetime value that calculates

the future pro�ts associated with an insured.

We believe that this model o�ers a good approximation of the empirical data and proposes

an interesting �rst step in the modeling of exposure time in insurance. It may be appropriate to

continue to improve the proposed model in the future. Several types of generalizations have been

proposed.

Finally, note that this analysis considers only the evolution of households already in the portfolio.

Thus, the model does not include the arrival of new policies in the portfolio. Consequently, the

number of insured households in the insurance portfolio decreases over time. However, the main

purpose of the paper was to analyze the change in the number of insured cars in a speci�c household,

as well as the insured's behavior and the impact of household characteristics. If an insurer wants to

analyze the evolution of its entire portfolio, it should take into account the arrival of new households.

The insurer could thus calculate the monetary value of the portfolio (also called customer equity),

analogous to the calculation leading to customer life value. We are currently working on that

modeling.
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