Modeling the Number of Insureds’ Cars Using Queuing Theory

JEAN-PHILIPPE BOUCHER and GUILLAUME COUTURE-PICHE
April 22, 2015

Y Quantact / Département de mathématiques, UQAM. Montréal, Québec, Canada.

Email: boucher. jean-philippe@ugam.ca

Abstract

In this paper, we propose to model the number of insured cars per household. We use queuing
theory to construct a new model that needs 4 different parameters: one that describes the rate
of addition of new cars on the insurance contract, a second one that models the rate of removal
of insured vehicles, a third parameter that models the cancellation rate of the insurance policy,
and finally a parameter that describes the rate of renewal. Statistical inference techniques allows
us to estimate each parameter of the model, even in the case where there is censorship of data.
We also propose to generalize this new queuing process by adding some explanatory variables
into each parameter of the model. This allows us to determine which policyholder’s profiles
are more likely to add or remove vehicles from their insurance policy, to cancel their contract
or to renew annually. The estimated parameters help us to analyze the insurance portfolio in
detail because the queuing theory model allows us to compute various kinds of useful statistics
for insurers, such as the expected number of cars insured or the customer lifetime value that
calculates the discounted future profits of an insured. Using car insurance data, a numerical
illustration based on a portfolio from a Canadian insurance company is included to support this

discussion.
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1 Introduction

In recent years, a value that has gained interest in actuarial science is the lifetime customer value,
see Guillén et al. (2012), Guelman et al. (2014) or Faris et al.(2010) for a general overview. This
is a term from the marketing field that allows targeting of long-term clients. In insurance, it is a
value that an insurer can assign to each insured, calculated by discounting all the future profits of
the insured. Its application to the field of insurance is particularly recent (see Verhoef and Donkers,
2001), possibly because of the complexity of the actuarial field. To calculate the lifetime customer
value of each client, as well as other useful statistics, we propose to model the number of insured
cars per household. We use queuing theory (see Gross et al. 2008 for an overview) to construct a
new model that needs 4 different parameters: one that describes the rate of addition of new cars
on the insurance contract, a second one that models the rate of removal of insured vehicles, a third
parameter that models the cancellation rate of the insurance policy, and finally a parameter that
describes the rate of renewal. Using regression methods, we also identify insured profiles that are
more interesting for insurers. A numerical illustration taken from a portfolio of a car insurance data
from a Canadian insurance company is included to support this discussion.

In the second part of the paper, we propose the first approach to model the number of insured
vehicles. This includes a process to model the arrival of new vehicles and another process to model
the removal of insured vehicles from an existing insurance contract. A third process to model the
renewal process will also be added to the model. In Section 3, we generalize the model of Section
2 to include a process that models cancellations during the contract. In Section 4, we propose a
method to estimate the parameters of the models, for complete and for censored data. Covariates
representing the characteristics of each household will then be added into each parameter of the
process. In Section 5, we apply the model and calculate several useful statistics, such as the expected
number of insured vehicles or the lifetime customer value. Possibles generalizations of the model

will be discussed in Section 6, while Section 7 concludes the paper.

1.1 Definition of terms

The term household is used to designate a single customer, or an insured. This household can

include several members (or drivers) and several cars grouped under one annual insurance con-



tract, which can be renewed each year. The contract represents the document that binds the
insurer with the insured household. In this paper, we focus on the number of cars that the contract
covers and that are owned by the same household. By extension, added cars and removed cars
from the insurance contracts are also analyzed. Finally, at any time during the insurance coverage,
a household can decide to cancel its contract, meaning that all the insured cars are also canceled

accordingly. We call this event a breach of contract or a cancellation.

1.2 Data Used and Notations

The use of queuing theory is based on the different waiting times before a change in the number of
insured cars. We base our research on empirical analyses that come from a Canadian car insurance
database. This database contains general insurance information on each of the 322,174 households
for the period of 2003 to 2007. Note that because of the small length of the analyzed time period,
the data are censored. For each household, we have information on each of its insured cars. We also
have information about new or broken contracts, contract renewal, added or removed cars. Section
4.3 analyzes the database in detail, and describes the insurance data more precisely, particularly
the characteristics of each of these policies.

A graphical analysis of waiting times involved in the modeling is presented. First, in Figure 1.1,
the distribution of the life of an insurance policy (in years) is shown. By the life of an insurance
policy, we mean the time between the effective date of a new contract and the date of a non-renewal,
between the effective date of a new contract and the date of a cancellation. In the first graph of
this Figure, to avoid possible bias, we only used policies that were issued and canceled during the
2003-2007 period. This sample allows us to better understand the data. From the figure, we can see
that there is a shock at each contract renewal date. Aside from that shock, we can also observe a
decreasing exponential trend in the data. The color code shows that most departures happen when
there is only one insured car on the insurance policy. In Figure 1.1, the time before the addition
of a car on an existing insurance contract is also shown. For this graph, all the data were used.
The last graph of Figure 1.1 uses again all data, and shows the time before a removal of a car on a
policy, which remains in force despite the removal of a car. Again, we can see an exponential trend,
shocks at each contract renewal date, even if these shocks are less important than the ones observed

in the first graphs. The major purpose of our project is thus to create a mathematical model that
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Figure 2.1: Network graph of a Poisson Process

will be able to approximate those observations.

Let N(t) be a random variable representing the number of elements in a queuing system at time
t. In our case, the number of elements is the number of insured cars owned by a specific household.
The probability function of the number of insured cars will be expressed as Pr{N(t) = i} = p;(t).
The probability generating function (PGF) will be expressed as Py (z,t) = > oo pi(t) x z*, and

its partial derivative with respect to ¢ by:

OPn (2, > dp; ,
Ngt( Doty = dedit)x,zl. (1.1)

1=0

Finally, the conditional probabilities will be represented and noted as p(;; (s,t) = Pr{N(t) =

iIN(s) = j}-

2 Modeling the number of vehicles

In this section, we introduce how queuing theory, based on Newell(1982), can be used to model
the number of insured cars. We first introduce the Poisson process to model the arrival of a new
vehicle, and we add another process to model the removal of cars from the contract. Fewer details
will be given in this part of the paper because interpreting the result requires only basic knowledge
of queuing theory. Nonetheless, this introduction to queuing theory allows us to explain some tools

that will be used in complex models, such as the one developed in Section 3.

2.1 Addition and removal of vehicles

In a pure birth process, also called the Poisson process and illustrated in Figure 2.1, there is only
one component of arrival, defined by a parameter A. The Chapman-Kolmogorov equation is defined

in our context by:
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Figure 2.2: Network graph of a M /M /oo model

pi(t) = Z Pi(8)P()(8:1),
=0

for s < t. We interpret this equation by the fact that a probability can be defined by the sum of
all the different paths for a short time period. These equations thus require us to find the conditional
probabilities of the system, at some level ¢ at time t 4+ At, knowing that the process was at the level

7 at time t. This is expressed as:

AAt + o(At) when j =i —1,
1 — AAt + o(At) when j = 1,
o(At) when j <i—1,
0 otherwise,

o(At)

where lima; 0 —x;~ = 0. For this first model, it can be shown that the probability function can be

expressed as:

pi(t) = ———, (2.2)

which represents the classic Poisson distribution.

To obtain a model that is more realistic, we add a service component (which can also be called a
death component) to the pure birth process. This is illustrated in Figure 2.2. The death component
is supposed to be independent from the birth process. The resulting model is denoted as M /M /oc.
Like the Poisson process, the time between each arrival of a new element follows an exponential
distribution. This feature is represented by the first M of the acronym, which means "Markov".
For this model, each element leaves the system after a certain period of time that also follows an

exponential distribution. This new process of the model defines the second M. Finally, the last



symbol oo means that the departure process of each insured car can begin before the end of the
departure process of another vehicle.

In other words, we are working with a dynamic modeling of a population that grows at a constant
rate A, and dies at a rate iu, with ¢ representing the number of elements in the population at a
specific time. In our context, the population is the number of cars in the household and therefore
the new cars are added to the insurance contract at a rate A, while vehicles leave the same insurance

contract at an individual rate of u. For this model, the conditional probabilities are:

AAt + o(At) when j =i —1,

1—(A+ip)At+o(At)  when j =1,
(1 + 1)puAt + o( At) when j =i+ 1,

o(At) otherwise.

For this well-known model in queuing theory, it can be shown that the probability function is

expressed as:

min(%,a) —(1—e "\ /p ( —ut i—k
e 1—e M\ a\ _, utva—
pi(t) = (i[—k)! | X (k>e L e (2.3)

k=0

The probability generating function is expressed as:
P _ —pt a 2(1—e rt)(z—1)
Ny (zt) = [(z = 1De ™ +1]"en (2.4)

where N (0) = a, which means that the initial number of insured cars (at time 0) is a.

2.2 Renewal of the vehicles

It is possible to add flexibility to the model M /M /oo by generalizing the component service process.
Such a generalization means that the second M of the acronym should be replaced by a G (meaning
general distribution). The proposed generalization allows us to incorporate a shock at the renewal

time for each car. Indeed, as empirically shown in Figure 1.1, there is a higher probability that a



Figure 3.1: Network graph of a queuing model allowing cancellation of the insurance contract

car will be removed from the insurance contract at its annual renewal.

Based on Benes(1957a), the model is constructed by separating the process into several compo-
nents modeling the number of cars. Indeed, we can suppose that the process N (t) can be expressed
as N(t) = Z(t) — Y (t). In this case, the process Z(t) will count the number of arrivals of new cars
in the system until time ¢, and the process Y (t) will count the number of departures of cars from

the insurance contract until time ¢.

When N(0) = 0, it can be shown that the probability function can be expressed as:

(Atge)'e” N

Pr(N(t) =1i) = g

, (2.5)

from which we recognize a Poisson distribution with parameters Atg;. The parameter ¢; can be

interpreted as a survival probability, and can be defined as:

where S(-) is the survival function of the service time, which corresponds in our case to the time
since the car is insured. For a car insurance application, for example, we could include a shock that

would happen at each renewal anniversary using the following function:
S(a) = ereplel, (2.6)

where x is the age of the policy, and p represents the probability of renewal of the insurance contract.



3 Model with a period of inactivity

It would be interesting to generalize the model to include a possible cancellation of the contract,
meaning that all vehicles insured in the same household leave the insurance company simultaneously.
This model has to be constructed by adding a Poisson process that allows moves from levels n > 1
to 0 at a rate -, recreating the effect of a cancellation. Figure 3.1 illustrates this model. The added
process is supposed to be independent from the other ones. By studying this new model, we see,
however, that it generates a conceptual problem. Indeed, the model allows the possibility that a
new vehicle is added to an insurance contract even if the insurance contract has not had insured
vehicles (state 0) for a while. This is counterintuitive: it seems more logical to believe that a policy
without insured vehicles is simply cancelled. In this sense, the state 0 of this model should simply
be an absorbent state.

However, further empirical analysis of the data points to a slightly more complex situation.
Indeed, it sometimes happens that an insurance policy without an insured car is not cancelled. It
means that sometimes a new vehicle is added to an existing insurance contract without insured cars.
In our data, this happened 1,340 times, and the average time spent in the state 0 is almost half a
year (0.4789).

This represents a form of inactivity of the contract, which allows reactivation of the contract
when a new vehicle is added to the contract. One could think of situations such as storage of the
last vehicle of the policy, the presence of another type of insurance (home or other) associated with
an automobile policy and preventing the complete cancellation of the policy. There are also other
more specific explanations for this situation. In this sense, empirically, we cannot consider the state
without an insured vehicle as an absorbent level. However, the presence of an absorbent level that
represents the final and decisive cancellation of a contract must be considered. This state will not
be the one corresponding to a contract without an insured car, but a slightly different one.

We therefore propose a model such as the one shown in Figure 3.2. In this model, a new state
is created and identified as 0*. This new level is an absorbing state from which it is no longer
possible to add vehicles'. In other words, the level 0* is accessible only in cases where the contract

is cancelled. It is thus noted that the passage to 0* occurs at a rate  for each level. Although we will

'Tf the insured cancels its contract and later wants to be covered again, insurers will often create a new insurance
contract.



Figure 3.2: Network graph of a queuing model with absorbent state 0*

explore this situation in more detail in Section 4, we would like to highlight a conceptual difficulty
with this new model. In the case of a policy with only one vehicle, empirically, the cancellation of
the last vehicle is similar to the cancellation of the contract. In this sense, it is not clear whether the
policy has been canceled (and enters the absorbing state 0*) or if the insurance contract is simply
in a period of inactivity (state 0). We will propose a solution to this problem later.

The construction of this new model is complex and requires new notations. Thus, in addition
to N(t), which represents the number of insured cars at time ¢, the random binary variable M (t)
is now introduced. This r.v. defines the life or death of the process at time ¢. In our context, a
process is alive at time t, or M (t) = 1, when the insurance contract is in force, or in other words,
when the contract has not been broken. A live process without insured vehicles is simply considered
inactive, and at the state 0. Conversely, a dead process, or M (t) = 0 means that the household has

cancelled its insurance contract and the absorbing state 0* has been reached.

3.1 Modeling

For this model, Chapman-Kolmogorov equations should have been used to find the transition prob-
abilities, from which difference-differential equations can be found. We instead use a simpler form of
mathematical development. We first make the assumption that the time process related to the ran-
dom variable M (t) is exponentially distributed. In other words, we suppose that the time between
the beginning of the contract and the end of the contract is U ~ Exponential(y). Consequently, we
have M(t) =0 when t > U and:

Pr(M(t)=1)=e . (3.1)
We can then define the number of insured cars for both situations:

10



1. The case M(t) = 1: As long as the household is insured, the processes of adding and removing
vehicles are active. As such, we can model the number of insured cars N (¢) with the M /M /oo

queuing model seen previously.

2. The case M (t) = 0: When the cancellation occurs, the number of insured cars is 0. We then

have Pr(N(t) = 0|M(t) =0) = 1.

Consequently, the joint PGF for N(¢) and M(t) can easily be developed:

Pr(M(t) = m, N(t) = i)y™z*

MH
NE

Py (2,y,t) =

3
o
<.
I
o

=l

Pr(N(t) = i|M(t) = m) Pr(M(t) = m)y™z*

I
.Mg

3
]
o
S
I
o

= Pr(M(t)=0)+ Y Pr(N(t) =i[M(t) = 1) Pr(M(t) = 1)y2’
=0
= 1—e 4 e_'ytyPN(t)(z, t)

= l—e ey ((z— e+ 1)‘1 QD=2 (3.2)

The PGF of the M/M /oo model can be recognized from the right part of the equation, where

equation (3.1) is added.

3.1.1 Adding Shock at the Renewal

At each policy anniversary, the insured has to renew his or her insurance contract. It is possible to
modify the probability generating function by adding a Bernoulli trial that models this situation.

To do this, equation (3.1) is modified to add a renewal probability p:

Pr(M(t) =1) = e Vplt. (3.3)

The variable t still represents the time in years, while the notation |-| is the floor function. At

each policy anniversary for p < 1, this function causes an increase in the probability of cancellation.

11



It is easy to rewrite equation (3.2) with this new definition to have the following result:
Pyyare(z0,1) = 1 — e Vplt) 4 e pltly (2 — 1)e#t 4 1) e DA (3.4)

which now represents the final process that we proposed to model the number of insured cars.

4 Statistical Inference

It is possible to estimate parameters A, 7y, i and p of the model by maximum likelihood. The estima-
tion technique requires finding the joint probability density, and to adjust it based on observations
of the database. Some assumptions must be made to be able to use the information available from
the database. We will first summarize the steps in estimating the parameters of a simplified model
where it is possible to distinguish each event. Then, by introducing data censorship and explanatory

variables, the model will be adapted and generalized.

4.1 Complete Data
4.1.1 Notations

To estimate all parameters of the new model, a list of variables that are used in the likelihood
function must be presented. All possible events observed during the life of the insurance policy will

be noted as:

1. Type 1 event, which represents an addition of a car on the insurance contract. The random
variable E represents the total number of events of this type (excluding the cars already

insured at the beginning of the first observed contract);

2. Type 2 event, which represents a cancellation of the insurance policy at the policy anniversary
date. The random variable () is an indicator variable of this type of event. In other words,

() = 1 if there is no contract renewal;

3. Type 3 event, which represents a cancellation of the insurance policy at a different time than
the anniversary of the policy. The random variable A is an indicator variable of this type of

event;

12



4. Type 4 event, which represents a removal of a car from the insurance policy. The random

variable S represents the total number of events of this type.

Thus, the total number of events, noted as K, is equal to the sum of all the previous elements,
such as K = E+ A+ @Q + S. We also propose notations for all the variables specifying time

information about the insurance contract:

1. t;, the time of occurrence (in years) of the 4* event affecting the number of insured cars;

2. %V] the time period (in years) between the (j — 1) and the ;' event, where ?J =t; —tj_1,

with Zl = 1.

3. T, the number of years the insurance contract was alive or inactive, where T' = ZJK:1 t; and

hence T = tg;

4. Finally, we define respectively by W, Wy, W3 and W, the random variables that define the time

before the occurrence of an event of type 1,2,3 or 4.
We then have:

1. Nj, a variable that counts the number of cars immediately before the §* event;

2. V, the sum of the exposure time (in years) of all cars in a household so that V = fOT N(t)dt =

K~
> tiN;.

4.1.2 Likelihood function

The likelihood functions are developed based on the work of Benes(1957b) for the M /M /oo model.
To estimate the parameters, we will build the conditional likelihood function based on the initial
state. In this sense, we are not interested in the number of cars already insured in the portfolio
(we work with this initial assumption), but only on processes that affect the number of cars in
the future. Under the assumptions in the design of the system, these variables were defined as
U, ~ Exponential(\), Uy ~ Exponential(u), U3 ~ Exponential(y) et ¥y ~ Geometric(p).

To define the joint distribution of all events for a single household, we have to analyze all possible

cases. All processes are supposed to be independent, which facilitates decomposition of the model.

13



For example, knowing that the first event is the addition of a new vehicle on the insurance contract

(type 1 event), observed at time #;, we obtain:

Pr(¥, = 11, Uy > 61, Uy > 11,0y > ,{1) = )\e_/\?le_Nl“t}e—ﬁlph(a), (4.1)

where h(t) is a function that counts the number of times a specific household was in a renewal
position before time ¢. This equation was developed using the properties of the first event of a joint
distribution of exponentials. Then, by a similar development, it is possible to find the probability

of events 2,3 or 4?:

PI‘(\Ill > ?1, Uy = ?1, Uy > ?1, Uy > gl) = 67)\?1NlueiNlu‘{leivtNlph(tNl); (4.2)
Pr(\I11 > ;1, Uy > ;1, \113 = ;1, U, > ;1) = 6_)‘?1 €_N1Mt~1’y€_’yt~1ph(t~1); (4.3)
Pr(\Ifl > ;1, Uy > ;1, Uy > ;1, U, = ftvl) = 6_)‘?16_]\[1“?16_7?1])}1(?1)_1(1 — p). (4.4)

Thereafter, knowing that exponential processes do not have memory, it is possible to calculate

the product of all K events to obtain the joint distribution of all events of a single household:

S
FE,AS,.QTVIAy,ump) = A= (H Ns> pSe it NilinAe=r X0l (1 - p)QpX Tt h(E)-Q
o APyApS(1 - p) Qe WENT =iV TI=Q (4.5)
where the constant terms have been removed from the second equation because they are not used

in computing of the maximum likelihood method. For all ® households, the loglikelihood function

can be expressed by:

[0
(=) B+ Alny+Snp+Qin(l—p)+ (|T) — Qi) lnp— (A+)T —uVi,  (4.6)
=1

2This technique is slightly biased by the fact that it does not consider the possibility of cancellation of the insurance
contract at the renewal date. However, the impact is minimal because it corresponds to approximately 1/365.

14



where the subscript ¢ identify each household. Finally, by maximizing the loglikelihood function,

we can obtain the following estimators:

*g

<.

@
A
~ Y h=

> )

]

L
¥

A=

[S]
=
]

o
e

4.2 Incomplete Data

Given that the time horizon of the sample is only 5 years, it is not always possible to observe
the whole lifetime of an insurance policy. Consequently, the data that we are working with are
necessarily censored and it is not possible to perform the estimation techniques based on complete
data. To estimate the parameters correctly, important assumptions must be made. In this sense,
we note a new variable, 2, the observation date of the database. For example, in the case of our
empirical analysis, this date is December 31, 2007.

Thus, we do not know what happened to a policy that had not been canceled before that date.
Maybe the policy was canceled in 2008, or is still active in 2014. For those contracts, we must add to
the likelihood function the time period between the last observed event K and €2, i.e. a probability
function that indicates that no events occur during that time interval. This corresponds to the joint

probability of survival of 4 events. It is therefore fair to say, by independent random variables, that:

Pr(\Ill >0 —tg, Vo >0 —tg, U3 >0 —tg,Vy >Q—tK)
= Pr(\Ifl >0 — tK) Pr(\I’Q >0 — tK) Pr(\I/g >0 — tK) Pr(\IJ4 >0 — tK>

— e_A(Q_tK)e_NK,“(Q_tK)G_V(Q_tK)ph(Q_tK)‘ (4.7)

4.2.1 Inactive vs Canceled

When there is censorship, we must distinguish between inactive insurance contracts (state 0) and
canceled insurance contracts (state 0*). Indeed, in cases where only one vehicle was insured at time

ti,i.e. Ng =1, an event of type 3 and an event of type 4 looks similar.
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Let us first note this situation by a new indicator variable AS(Q2 —tx) = AS = 1, meaning that
this unknown state has a duration of 2 — tx. Because we are working with exponential random
variables, we can sum equations (4.2) and (4.3). We obtain the probability that the household
enters the unknown state at time tx. This probability is expressed by e~ tutin ph(zK )(u + ),
which one may incorporate in the likelihood function.

By the properties of the exponential distribution, the probability that the household is in state

0* (event of type 3) or in state 0 (event of type 4) are respectively:

Pr(M(tg) =0|AS =1) = ﬁ (4.8)
Pr(M(tg) = 1, N(tg) =0|AS = 1) = ﬁ (4.9)

It is possible to include the time ) — tx in the likelihood function to know which event between
type 3 and 4 is the most probable.
When no possibility of renewal is possible between time ¢, and €2, 3 situations are possible at

time tg:
1. An event of type 3 occurred at tx, which implies that the insurance policy is canceled;

2. An event of type 4 occurred at tx and no other event has occurred up to 2. This implies that

the insurance policy is inactive.

3. An event of type 4 occurred in tx and an event of type 3 occurs during the period (tx, ),

thus canceling the insurance policy.

Instead of calculating each of these probabilities, it is easier to calculate the complementary
probability. This complementary probability corresponds to a single event: the occurrence of an
event of type 4 at time tx followed by an arrival during the period (¢x,2). This probability can be

calculated as follows:

_ _ _ : __H (v (Q—tk) A _
Pr(M(tx) = 1, N(tx) = 0]AS = 1) Pr(¥; < min(Us,Q — tx)) = 1—e 0 .
r(M(tx) (tx) = 0] )Pr(¥; < min(¥s3 K)) 7+u< e >)\+7

(4.10)
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This corresponds to the product of three probabilities: the probability that an event of type 4
occurs at tx, the probability that events of type 1 or type 3 occur before 2 and the probability that
this last event is a vehicle entrance (type 1 event). It is important to note that this equation should be
used only in cases where there is no possibility of renewal in the unknown period. Consequently, we
need to generalize this equation to include each contract renewal in the calculation of the probability
of remaining in the unknown state. To do this, it is necessary to separate the probability of arrival

of a vehicle according to each year.

But first, several elements must be explained in detail. First, it should be noted that time tg,
corresponding to the moment when the status of the insured becomes unknown, does not necessarily
match the time of the policy renewal. This means that the time period before the first renewal, and

the last period before € (if different) are less than one year apart.

Consequently, if there is at least one renewal during the unknown period 2 —tx, a way to write
the unknown time part of the year before the first renewal is 1 — {tx}, where {-} is the fractional
part function. Similarly, the time part of the year before Q can be written as {2}, and the total

number of renewals will be || — |tx ] = R. We then have:

Pr(¥; < min(¥3,1 - {tx}))

Before first renewal after tx

+ Pr(min(\Ilg, \Ill, \1’4) >1-— {fK}) X PI‘(\I’l < min(\Ilg,Q — {tK})| min(‘llg,\ll4, \Ifl) >1-— {tK})

Between the first and second renewal after tx

+ (4.11)

This equation can be understood as the sum of many possibilities occurring between each re-
newal. The first element is simply the probability that an event E occurs before the first renewal
after tx. The second element of the sum is also the probability that an event E occurs, but be-
tween the first and the second renewal after tx. In this case, the probability must also consider

the fact that the insurance policy should have been renewed at the first renewal after tx. All other
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situations, between potential renewal j and j + 1, for j = 3, ... must also be calculated, so that:

Pr(\I/1 < min(‘lig, Wy, Q) — tK)’R > 1)
_ A (1 _ ef(w)(lf{m})) b N a-tth), (1 _ Q,WH)) L

v+ A v+ A
A
A N R (1 ()
+’y T )\e P (1 e )
— (A R—1
_ A (1= eI (D) 4 = HN0={uxdy (1 — o=t 1= (pe=0*Y)
A+ 1 — pe=(r+A)

e FN(R—{tx ) R (1 = e*“““”})] :

where a simplification is done using the properties of geometric series. Cases when R =0and R > 0

can be combined to obtain:

Pr(¥; < min(V3, ¥y, Q —tg)) X Pr(M(tx) =1, N(tx) =0]AS =1)

oA []I(R ~0) (1 _ e*(v+>\)(9*t1<)) YR >1) {(1 _ e—(wx)(k{w}))

pAy Y+ A
1 — (pe=(r+0) !
e~ (NI {txD),, (1 _ efwn) p
1 — pe_(’Y+)\)
e~ (N (R={tx )R (1 - e*W“){Q})H = G(tg, Q). (4.12)

The case where p = 1 gives the result shown by equation (4.10). Finally, for the sake of simplifica-

tion, as already noticed, we calculated the complementary probability.

Following the correction of the model to include situations where it is difficult to distinguish
between inactive and canceled insurance policy, the likelihood function (4.5) must be adjusted by

adding the term 1 — G(tk,2):
LA\, 1, p) oc e OFNTemmVAE S A1 - p)QplTI=Q (1 4+ 9)(1 - Q)Y (4.13)

where A* = 1 if the insured is in the unknown state. Using the logarithm of this function, and
summing for all households of a given portfolio, it becomes possible to estimate the four parameters

of models, A, v, u et p.
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Car Arrival
A

Cancellation
i

Car Removal
1

Renewal
p

0.0730 (0.0003)

0.0400 (0.0003)

0.0828 (0.0003)

0.9179 (0.0003)

Table 4.1: Parameters Estimations (std. err.)

4.3 Numerical Applications

The model was applied to the insurance dataset described in Section 1.2, and all 4 estimated parame-
ters appear in Table 4.1. The value of X means that, for an active contract, at each 0.07303~! = 13.69
years in average, a new car will be added to the contract. The value of 1 means that each car has
an average life of 0.08277~! = 12.08 years into an insurance contract. Note that the arrival rate of
cars is not enough to compensate for the departure rate of cars because 2 < 1. Note also that the
annual renewal rate is about 92 % and that the probability of cancellation is approximately equal to
4%. For the insurer analyzed in this paper, arrival of new insureds would then be needed to ensure

long-term profitability.

4.3.1 Covariates

Intuitively, we know that some household profiles are more likely to add or remove cars on their
insurance contracts. Similarly, we may think that some profiles cancel more than others or that
certain types of policyholders have a lower or higher rate of renewal. Thus, the addition of covariates
into each parameters of the queuing process seems justified.

Covariates selected to define the vector X; of each household are provided in Table 4.3.1. The
effective dates of the insurance contract were used to show the stability of households insuring in
July. Even if the characteristics of a household can change over the year, to simplify, only the
characteristics observed in the first contract are considered. We consider that the effect is minimal,
because the time horizon of the database is quite short, and most households do not change their
risk characteristics over the year. However, future research might improve the modeling.

A link function g(X;3) is then associated with each parameter, where 3 is the vector of param-
eters to be estimated. In our model, the parameters satisfy A, v, u € RT, consequently a logarithmic
link function is chosen because this link function allows parameters to be always positive. Moreover,

because the parameter that models the renewal probability must satisfy p € [0, 1], we use the logit
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Variable | Description
X1 equals 1 if the household comes from the general market (as opposed to group insurance)
X2 equals 1 if the household has at least one rented car
X3 equals 1 if the insureds are not married
X4 equals 1 if the household is with the insurance company for less than 9 years
X5 equals 1 if the effective date of the insurance contact is between January and July
X6 equals 1 if the effective date of the insurance contact is in July
X7 equals 1 if the effective date of the insurance contact is on the first day of a month

Table 4.2: Binary variables summarizing the information available about each household

‘ Parameters ‘ B B By Bp ‘
Bo -2.494 (0.015) -3.709 (0.039) -2.726 (0.014) 2.769 (0.019)
51 -0.264 (0.009) -0.070 (0.019) 0.122 (0.009) -0.152 (0.010)
B -0.142 (0.011) -0.048 (0.011)  0.092 (0.013)
B -0.454 (0.009) 0.214 (0.018)  0.410 (0.008) -0.246 (0.009)
Ba 0.201 (0.014)  0.677 (0.038)  0.130 (0.013) -0.399 (0.017)
Bs - : : 0.137 (0.009)
Bs -0.098 (0.012) -0.181 (0.029) -0.034 (0.012) 0.400 (0.016)
B7 -0.129 (0.009) -0.647 (0.021) -0.129 (0.009) 0.089 (0.010)

Table 4.3: Estimated parameters for the process with covariates
link, i.e. p; = %. The estimated values of the vector parameters 3 are shown in Table 4.3.

The objective of an insurer should be to maximize the number of cars insured at time ¢t. In
this case, we are looking for a high value of parameters A and p, combined with low values for the
other parameters p and . The results suggests that some covariates have a great impact, such as
marital status, or X6 identifying insured whose effective date is July 1%¢. In addition, policyholders
renewing their insurance contract on the first of each month also offer increased stability. Finally, as
expected, the covariate X4, which identifies insured with the insurance company for less than 9 years,
shows higher loyalty to their insurer. To test whether the explanatory variables are statistically
significant, a Wald test was performed according to a confidence interval of 95% for each parameter.

Consequently, 85 was not included in 8y, 8, and 8,, and 2 was not included in 3,,.

5 Analysis

In this section, applications are presented using the estimated parameters found by regression in

the previous section and shown in Table 4.3. Thus, for example, even if we are working with X, 7,
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Parameter | X1 X2 X3 X4 X5 X6 X7

Household A
Household B
Household C
Household D
Household E

O = O = =
e = i e
O O~ =
o OO O =
oo oo O
R oo oo
—_—0 = O O

Table 5.1: Covariates of each profile

Parameter ‘ A 0% 7 P

Household A | 0.0492 0.0557 0.1270 0.87795
Household B | 0.0349 0.0283 0.1063 0.92154
Household C | 0.0460 0.0159 0.0868 0.93163
Household D | 0.0550 0.0228 0.0705 0.93756
Household E | 0.0570 0.0107 0.0530 0.96608

Table 5.2: Parameter values for each profile

it or p, for simplicity, we will note those parameters by A, v, u and p.

We selected 5 profiles to represent the impact of market segmentation. Indeed, given that there
are 96 possible profiles, only some typical insured will be used to show the results of our analyses.
The first selected profile is the best type of household E in terms of expected insured cars, while
the worst profile corresponds to household A. For illustration, we also used 3 average types (B, C,
D). Table 5.1 expresses each profile in terms of their covariates.

We can see that the only difference between household types B and D lies in marital status.
As we can see by the results shown in Table 4.3, this covariate has a significant impact on each
parameter of the model. In Table 5.2, the value of each parameter A, v, p and p is shown for each

profile.

5.1 Expected number of insured cars

Using the probability generating function of the complete process presented in Section 3.1.1, inter-

esting properties can be found. To simplify notations and computations, we will use the variable

H(t) as the number of insured cars from an active or inactive insured, i.e. H(t) = M(t) x N(t).
4" P(2=0)

Knowing that Pr(X = n) = =5, we can compute the expected number of insured cars H(t)

by using;:
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0Py M (Z:Ly:lat) = . i—
E[H(1)] = — 0 => i,
1=0

We compute the expected value for our process by using equation (3.4). We first took the

derivative in respect to z:

- —u a 2—1)(1—e—Ht)A
Pyt P[P (1 (et 1) e
0z s
= e—vtthJ ((z —1)e 4 1)(1*1 ye(z—l)(l—e_ﬂt)%

x [ae“t +((z=1)e " +1) (1—e ") 2] : (5.1)

After, setting z = 1 and y = 1, the expected value can be found:

_ OPup(z=1,1)

EIH (1) —

A

= ¢ tplt] <ae_“t + (1—e") > . (5.2)
u

With similar computations, other moments of the distribution can be found, such as the variance

or higher moments. Those computations can also be applied to all the other probability generating

functions shown in the paper.

For each profile, the expected number of insured cars has been computed. The resulting function
is shown in Figure 5.1. For illustration, we set the value ¢ = 0, meaning that the insureds are at the
beginning of their contract, and that the next renewal will be in one year. In the Figure, we can
clearly see the shock of each contract renewal, modeled by the parameter p. Numerical values can
be found in Table 5.3, where the expected number of insured cars after 5 years, i.e. just after the
renewal, is shown. We see that the initial number of insured cars linearly increases the expected

value.

The results point to a large difference between each profile, where for example, household E
seems to be much more advantageous for insurers than household A. Consequently, we believe that
an insurer could adapt its marketing efforts to target certain types of insureds, in this case households
of type E instead of household of type A. Indeed, because they stay longer in the company, insurers
should be able to offer discounts to some insured profiles that generate lower administrative costs

because they stay with the company longer.

22



E{N(t))

2.0

18 - o
16 - MM, -
I i T e S e P LR
12 -y T T,
1 e L T e o VR
0.8 mmsHousehold B [ gy - - - Ty, T - - - - -
06 - Househaeld D | B e T
s Hoyusehold C
04 T e T T
Household B
02 1 e .-
s Household A
D,D T 1 1 1 1 1 1 1 1
- 1 2 3 4 5 B 7 a8 9
t

Figure 5.1: Expected number of insured cars at time t

Initial number of insured cars (a) ‘ 1 2 3 4
Household A 0.281 0.490 0.700 0.909
Household B 0.417 0.756 1.096 1.435
Household C 0.541 0.961 1.381 1.801
Household D 0.604 1.058 1.513 1.967
Household E 0.812 1.424 2.036 2.648

Table 5.3: Expected number of insured cars after 5 years
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5.2 Discounting risk exposures

The discounted monetary value of a household can be found by calculating the present value of cash
flows in the future. In marketing terms, this result is called customer lifetime value. This value is
analyzed in several articles, for example Donkers et al.(2007), which compares different calculation
methods, Guillén et al. (2012) and Guelman et al. (2014). In our case, we will assume that the
insurance company makes a $1 profit for each one-year car exposure. This assumption can easily
be modified to be more realistic. We also use an instant discount rate of §. Therefore, to calculate
the customer lifetime value, it is necessary to calculate the present value of future exposure until
time 7" using a continuous J discount rate. The customer lifetime value will be denoted by wr, and

is computed by integrating the variable H(t) such that:

by using Riemann sums. The expected value can be easily calculated such as:

T < T ;
ren) = 1500 (i (1))
=1

T
= / E(H(t))e % dt. (5.4)
0

In Table 5.4, we show the expected value of each household if we suppose that the household
has two insured cars at time ¢ = 0. In the long term, the differences between household profiles
become apparent. Indeed, household E is on average 2.5 times more profitable after 20 years than

household A.

Classically, in the marketing literature, it is uncommon to calculate the customer lifetime value
over a very large time horizon. However, we found it useful to compute this result because it allows
us to obtain simple equations. Using equation (5.3), we can find the total profit for each household

when T goes toward infinity. Define this value as w = limp_, o, wr. Its expectation can be calculated
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Number of years (T') [ 1 5 10 20

Household A 1.833 5.468 6.720 7.122
Household B 1.869 6.359 8581 9.731
Household C 1.904 7.003 10.104 12.237
Household D 1.917 7.286 10.823 13.506
Household E 1.946 8.218 13.553 19.433

Table 5.4: Customer lifetime value for households having two insured cars at time ¢ = 0, with a 2%
discount rate

Ew) = /0 h E(H(t))e™%dt

_ /°° ~ G40t o <aeut+ (1= eh) A) gt
7
_ (7+5 —ut —put A
= Z ae M+ (1—6 ); dt

( —i(y+o+u) _ ¢ (i+1)(7+5+u)) , (e—i(v+5) — 6—(i+1)(7+5)) A
= Z a '+ P
— Y+ 6+ p (v +0)u
(e*i(7+5+u) - e*(i+1)(’v+5+u)) A .
p’L
(v 40+ p)p
(1— e OFFH) (g - 2 1 — e—(1+9)
_ (o= 3) BN €t T, (5.5)

(v 4+ 0+ p) (1 —e=GHtmp) = (y +6)u(l — e=0F)p)’

where a is the number of insured cars at time ¢ = 0. The numerical results, shown in Table
5.5 3 , show a great disparity between the best and worst households. Consequently, following our
assumptions, we can see once again that an insurance company should target policyholders having
the covariates of household E. This analysis is based on a $1 per household profit. This can be
generalized in a profit that can be a proportion of the premium. Moreover, using this model and
an economic model incorporating the elasticity of the price, the premium can be set as a function

of future profits.

3We made an approximation with covariate x4 that we kept fixed, but that should change over time. This is an
approximation done only for household A.
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Number of insured cars at time t =0, (a) | 1 2 3 4

Household A 3.964 7.161 10.358 13.555
Household B 5.588  9.992 14.395 18.799
Household C 7.661 13.011 18.361 23.711
Household D 8.782 14.586 20.390 26.194
Household E 16.130 24.735 33.340 41.945

Table 5.5: Customer lifetime value, with a 2% discount rate

6 Discussion

As mentioned previously, numerical results of our empirical study suggest that an insurer should pay
more attention to some households than to others. We wanted to introduce to the actuarial literature
queuing processes that are realistic and directly applicable to model risk exposures in insurance,
but it is important to understand that these conclusions were based on some assumptions of our
model.

In the previous section of the paper, we mentioned that the assumption of the profit component
of the premium should be generalized to be more realistic. Other changes are also possible. The
explanatory variables should be more dynamic to reflect the change in household characteristics
over time. For example, the covariate modeling the time insured within the company (x4) should
logically change over the year. For example, we could add claims experience to the model. This
could improve the fit of the model, mainly for parameter p, which represents the renewal rate.
Indeed, we intuitively believe that the insured’s behavior will not be the same if the insured files a
claim during a year. This change in behavior would probably be related to a premium increase. In
this sense, in such a generalization of the model a system of experience rating could be introduced.
The hunger for bonus phenomenon (see Lemaire 1976, or Boucher et al. 2009) should also be added
to obtain a more useful model and a more realistic approach.

Other interesting generalizations of the model are also possible. As mentioned by an anonymous
referee, dependence between the four processes used the model should be added in a future modeling.
For example, dependence between the cancellation rate and the renewal date seems logical. Indeed,
an insured who is aware of the prices on the insurance market should have a higher probability of
changing insurers during an insurance term and upon renewal. Similarly, it seems logical to believe

that an insured who adds a car on his insurance contract will be more likely to cancel one of the
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other vehicles. More generally, an insured who adds many new cars on his or her contract should
also remove many vehicles. Other kinds of dependence between processes are possible. However,
even if the dependence structure seems to be obvious, the addition of covariates in the model should
diminish the impact of such dependence.

Even if the inclusion of dependences between the processes can be an interesting generalization of
the model, we think that simpler generalizations of the model should be more useful. For example,
the use of other waiting time distributions (gamma instead of the exponential distribution, for
example) to model the processes should be envisioned. Other uses of the model proposed in the
paper, to be used with other lines of business (such as home insurance or group insurance) should

also be interesting avenues. Mixing several lines of business can also be considered.

7 Conclusion

We wanted to model the number of insured cars for each household. Starting with a simple Poisson
process, it is possible to generalize many types of queuing models. The model proposed in this paper
can be seen as a generalization of the M /M /oo process. We add a new death level to the system,
which allows the possibility of cancellation or non-renewal of contracts. Justified by empirical data,
we also propose a distinction between a canceled policy and an inactive insurance contract.

The proposed new model needs 4 parameters: one parameter that models the rate of addition
of new cars on the insurance contract, a second parameter that models the rate of removal of
insured vehicles, a third parameters that models the cancellation rate of the insurance policy, and
finally a parameter that describes the rate of renewal. Statistical inference techniques allowed us
to estimate each of these parameters, often by using the properties of the exponential distribution,
and by conditioning on all possible events. Finally, because we worked with censored data, we
have developed a way to estimate the parameters in the case where it is not possible to distinguish
between the inactive contracts and the canceled insurance contracts.

We also proposed to generalize this new queuing system by adding some explanatory variables
into each of the 4 parameters of the model. It was then possible to segment the portfolio and
to determine which policyholders’ profiles are more likely to add or remove vehicles from their

insurance policy, cancel their contract or renew annually. The estimated parameters obtained help
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us to analyze the insurance portfolio in detail because we developed various kinds of useful statistics
for insurers, such as the expected number of insured cars or customer lifetime value that calculates

the future profits associated with an insured.

We believe that this model offers a good approximation of the empirical data and proposes
an interesting first step in the modeling of exposure time in insurance. It may be appropriate to
continue to improve the proposed model in the future. Several types of generalizations have been

proposed.

Finally, note that this analysis considers only the evolution of households already in the portfolio.
Thus, the model does not include the arrival of new policies in the portfolio. Consequently, the
number of insured households in the insurance portfolio decreases over time. However, the main
purpose of the paper was to analyze the change in the number of insured cars in a specific household,
as well as the insured’s behavior and the impact of household characteristics. If an insurer wants to
analyze the evolution of its entire portfolio, it should take into account the arrival of new households.
The insurer could thus calculate the monetary value of the portfolio (also called customer equity),
analogous to the calculation leading to customer life value. We are currently working on that

modeling.
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