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Abstract

We consider the weighted K-Means algorithm with distributed centroids aimed
at clustering data sets with numerical, categorical and mixed types of data.
Our approach allows given features (i.e., variables) to have different weights
at different clusters. Thus, it supports the intuitive idea that features may
have different degrees of relevance at different clusters. We use the Minkowski
metric in a way that feature weights become feature re-scaling factors for any
considered exponent. Moreover, the traditional Silhouette clustering validity
index was adapted to deal with both numerical and categorical types of features.
Finally, we show that our new method usually outperforms traditional K-Means
as well as the recently proposed WK-DC clustering algorithm.

Keywords: clustering, mixed data, feature weighting, K-Means, Minkowski

metric.

1. Introduction

Clustering algorithms aim to find natural groups in a given data set so
that each group is composed of similar entities (i.e., objects), whereas entities
between groups are dissimilar. These data-driven algorithms are commonly used

in exploratory data analysis without learning any supplementary information
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from test data. Clustering has been used to address various practical problems
such as: image segmentation [Il, 2], mining text data [3, 4], marketing [5], general
data mining [6], bioinformatics [7, [§], etc.

Over the years there has been a considerable research effort in data cluster-
ing, generating a large number of clustering algorithms. Such a diversification
of clustering algorithms can be explained by a variety of different ways in which
data groups, normally referred to as clusters, may be formed. Some algorithms
allow a given entity to belong to two or more clusters, sometimes even with
different degrees of membership, but most of them allow it to belong to a single
cluster only [0 [I0]. In this paper, we are particularly interested in the latter
approach, including data partitioning algorithms with a crisp membership.

Among this kind of partitioning algorithms K-Means [I1], 12] is, arguably,
the most popular one [6], [13]. K-Means clusters a given data set Y composed
of entities y; for i = 1,2,..., N, each described over features vy, vs, ..., vy into
K non-overlapping partitions. Each cluster k£ = 1,2, ..., K has a single centroid
c1,Ca, ..., Ck, which represents the cluster’s centre. K-Means minimizes the sum
of the squared errors (E) between entities and their respective centroids, as

shown below:

K N
E = Zzum d(yi, k), (1)

k=11=1
where u;;, € {0,1} is a binary variable, specifying whether the entity y; is

assigned to cluster k or not, and d is a function returning the distance between
y; and ci. In most cases, the distance in use is the squared Euclidean distance

in which
\%

d(yirck) =Y (Yiv — Cko)”- (2)

v=1

In this case, calculating centroids becomes a trivial exercise:

Zij\il Uik * Yiv (3)
27],'\;1 Uik

The minimization of can be done using the iterative method below, which

Cky =

is carried out until convergence.
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1. Select K entities from Y at random and copy their values to the initial
centroids ¢y, ¢a, ..., cx. Set each u;p = 0.

2. Assign each entity y; € Y to the cluster represented by its closest centroid.
If entity y; is assigned to cluster k, then set u;; to 1. If there are no changes
in wu;, then stop the algorithm.

3. Update each centroid to the centre of its cluster. Go to Step 2.

Because of its wide use, the weaknesses of K-Means are rather well known.
The main of them are as follows: (i) there is no guarantee that the algorithm
will reach global optimum; (ii) K has to be known beforehand; (iii) it assumes
that each feature has the same degree of relevance (i.e., the same weights); (iv)
it does not support categorical features.

Aiming to address the point (iii), Makarenkov and Legendre [14] and Chan
et al. [I5] introduced the Weighted K-Means (WK-Means). This algorithm
automatically sets a weight, s,,, for each feature v in the data set, which is then
incorporated into the calculation of distances (see Section [2| for more details).
The approach of Chan et al. [I5] also considers a new parameter, 3, which is
the exponent of s,, but does not specify a clear way of assessing it. However,
WEK-Means does outperform K-Means and seems to work well in general [I5] [4].

Regarding the point (iv) above, K-Means, as many other algorithms, assumes
that any categorical feature has to be transformed into numerical. There are
indeed various methods for such a transformation [6]. However, most of them
result in information loss [16].

The latter issue has motivated recent developments of clustering algorithms
allowing for both numerical and categorical types of features. Huang [I7] in-
troduced the k-prototype algorithm, a popular variation of K-Means designed
to deal directly with data sets containing mixed data types. This approach has
been also extended to fuzzy clustering [10].

Kim et al. [9] introduced the concept of fuzzy centroids. In this concept, the
centroids are no longer represented by hard-type values, but instead by fuzzy

centroids. The latter authors showed that their approach works quite well in
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a fuzzy scenario, in which a given entity may belong to two or more clusters
with different degrees of membership. Ji et al. [Ig], inspired by the concept
of fuzzy centroids, has recently introduced the concept of distribution centroids
which represent the centers of clusters for categorical features in a crisp scenario,
rather than in a fuzzy one. Ji et al. [I8] also incorporated into their algorithm
the variable weight estimation procedure, thus addressing the above-mentioned
weaknesses (iii) and (iv) of traditional K-Means.

The WK-Means algorithm with distributed centroids (WK-DC) was proved
to work well on data sets with numerical, categorical and mixed data types [18].
However, as we will show here, there is still room for further improvement of
this approach.

The main contribution of this paper is to further improve the WK-DC algo-
rithm by: (i) applying subclustering, so that a given feature v may have different
weights at different clusters, and thus supporting the intuitive idea that features
may have different degrees of relevance at different clusters; (ii) using the L,
metric with the same exponent p in the weight and distance calculation so that
feature weights could be seen as feature re-scaling factors for any exponent; (iii)
calculating the centroids by using the minimization of the L, metric; (iv) show-
ing how the Silhouette clustering validity index can be adapted to deal with

both numerical and categorical types of features.

2. Background and related work

The Weighted K-Means algorithm (WK-Means) aims to estimate the degree
of relevance s of each feature v, taking it into account in the clustering process
[15, [14]. The concept of feature weighting is closely related to that of distance,
requiring an update in the latter. WK-Means incorporates feature weighting in
the squared Euclidean distance, by defining the distance between entity y; and
centroid ¢, as Zf,’il 85 “(Yin — Cr)?, where s, is the weight of feature v, and 3

is a user-selected exponent.

The partitioning of a data set Y, containing N entities y;, i = 1,2, ..., N, each
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described over V features, vy, vs, ..., vy, into K clusters is given by minimizing

the WK-Means criterion, which is as follows:

E

K N
DD ik sy - d(Yio, cr), (4)

k=1i=1v=1
where ¢y, is the feature v of the centroid of cluster k. The WK-Means criterion
is subject to Zl‘le sy, =1land 0 < s, <1 (forv=1,...,V), and a crisp
clustering in which a given entity y; is assigned to a single cluster. The binary

variable wu;; indicates whether y; is assigned to cluster k:

1, if y; belongs to cluster k,
Uik = (5)
0, if y; does not being to cluster k.

The algorithm to minimize WK-Means is very similar to that of K-Means
shown in Section [T} with a couple of extra considerations only. First, each s,
is initialized to a non-negative random value, but still subject to ZUV:1 Sy = 1.
Second, after updating each centroid, the algorithm updates each feature weight
as well, and then goes back to Step 2. This weight update occurs in a similar
fashion to that of WK-Means with distributed centroids (explained in Section
3). The WK-Means algorithm was shown to provide steady results [I5 4],
but it does not deal with categorical features directly. A data set containing
categorical features would need to be pre-processed to transform such features,
or a k-prototype algorithm should be applied.

To address this important limitation, Ji et al. [I8] proposed to use dis-
tributed centroids in WK-Means (WK-DC), showing that WK-DC outperforms
other popular partitioning algorithms such as k-prototype, SBAC and KL-FCM-
GM [19, 10). The WK-DC algorithm deals with data sets containing both
numerical and categorical features, but still represents each partition using a
single centroid C' = {c1, ¢a, ..., ¢k }. The centroid of a cluster k is represented by
¢k = {ck1,Ck2, ..., kv }. This representation is straightforward for a numerical

variable v. If v is a categorical variable containing T categories a € v, then

cro = {{ag, wi, b Aad, wi, b {ay, wi b {ay, wi, 1
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The above representation of the centroid of a categorical feature v allows
each category a € v to have a weight directly related to its frequency in the

data set Y, where the value of w}, is calculated using the following equation:

N
Why = Z Ntk (Yiv)s (6)
i=1

and
—1

(Zjvzl ujk) ) if Yiv = af]’
0, if yi # al.

Unlike WK-Means, the distance d(y;y, cry) for a numerical v in WK-DC is set

(7)

Nek (Yiv) =

to be the Manhattan distance, defined by |y;, — cgp|- Obviously, the Manhat-
tan distance cannot be applied if v is categorical. In this case, d(yiy,Cry) is

equivalent to ¢ (Yiv, Ckv), Where:

T
(i cho) = > 0 (Yin, ab), (8)
t=1
and,
. 0, if y;p = al),
ﬁ(yi'uz au) = (9)

wk, if yi, # ab.
Moreover, the WK-DC algorithm incorporates the feature weighting component
of WK-Means. Thus, each feature v € V has a weight s, representing its degree
of relevance, which is assumed to be inversely proportional to its dispersion. This
is an intuitive concept in which features that are compact, and by consequence
have a smaller dispersion, are thought to be more relevant than features that
are sparser, and by consequence have a higher dispersion. The dispersion of v

is given by D,,, as shown below:

K
Dv = Z Uik * d(yiva Ckv)' (10)
k=1 i=1
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Using D,,, it becomes possible to calculate s,,:

0, if D, = 0,
Sp = (11)

(S, 1810 ) it D, #o0.
where h is the number of features for which D, # 0. Note that Equation
leads to a division by zero at S = 1. In this case, the minimization of s results
in finding the feature with the highest D, for which s, = 1, while the weight of
all other features is set to zero [15].

There has been limited indication for what values of the exponent 5 WK-
Means provides the best clustering results, or how 8 could be successfully es-
timated for a particular data set. On the other hand, WK-DC was introduced
using solely, and rather successfully, 8 = 8 [I8]. Based on this success, we de-
cided to extend WK-DC by addressing the following three major points. First,
the WK-DC makes use of a single weight per feature s,. We believe that it
would be more intuitive to apply subclustering, in which a given feature v could
have different weights at different clusters (i.e., effectively using s, rather than
Sy). Obviously, s, will be subject to the following constraints: Zi‘;l Sk = 1
and 0 < s, <1 (for v =1,...,V), for each fixed value of k = 1,2, ..., K.

Second, the difference of one between the exponent 8 and the distance ex-
ponent in WK-DC [18] does not allow the feature weights to be seen as feature
re-scaling factors. If the two exponents were identical, the weights could be used
to re-scale the given data set as a part of data pre-processing step. This is not
only a matter of setting 5 to one, as in this case the minimization of would
set the weight s, of a single feature v to one and all other feature weights to
zero [15]. We propose to change the distance exponent instead, considering the
L, metric instead of the Manhattan distance.

Third, the WK-DC algorithm proposed by Ji and colleagues [I8] uses the
Manhattan distance to assign entities to clusters. It relies on the mean to deter-
mine the cluster centroids. It is well known, however, that the median instead

of the mean should be used with the Manhattan distance. In our algorithm, we
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ensure that each cluster centroid will have the smallest sum of distances to all of
the cluster’s entities by aligning the distance used to assign entities to centroids
with the minimization used to find each centroid. The distance we consider here
is the Minkowski distance and its minimization is given by the steepest descent

algorithm [20] discussed below.

3. The Minkowski Weighted K-Means with distributed centroid

We have recently considered the use of the L, distance in clustering with
Minkowski Weighted K-Means [20]. Unfortunately, our algorithm [20], as the
original WK-Means algorithm, was not designed to deal with categorical features

directly. The L, distance between an entity y; and a centroid ¢ is given by

{/25:1 |Yiv — Cio|P. Here, we propose to remove the p‘* root, similarly to the
popular use of the squared Euclidean distance in clustering, as well as consider
the feature weights.

In our new algorithm, called Minkowski Weighted K-Means with distribution
centroid (MWK-DC), we will apply subclustering allowing a feature v to have
different degrees of relevance at different clusters. This will have an impact on

the distance calculation as we will show below:

v
dp(yircr) =D shy - [yiv — crol” (12)
v=1

where p, an exponent of both the distance and the feature weight, is a user-
defined parameter. As we will show in the next section, an optimal value of
p can be selected using a modified version of the Silhouette clustering index
which will be adapted to deal with both numerical and categorical types of
features. Any distance measure creates a bias in terms of the shape of clusters
which the partitioning algorithm should be able to recover. WK-DC uses the
Manhattan distance, meaning that the bias is towards diamond shapes. WK-
Means uses the squared Euclidean distance, setting the bias towards spherical
clusters. When the L), distance is used, the resulting bias depends on p. If p =1,

our function will be the Manhattan distance; if p = 2, our function will be the
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squared Euclidean distance; and if p — oo, the bias will be towards squares. In
summary, by using the L, distance we can set the bias given by the distance
to any interpolation between a diamond and a square. With the weighted L,

distance in , we can rewrite as follows:

N V

K
Ey=>_> > tir sy i = crol”. (13)
k=1

i=1v=1
The calculation of s, in both WK-DC and MWK-DC is based on the dispersion
of v. However, the use in MWK-DC of an equation similar to Equation in
WK-DC would be problematic. Indeed, consider a scenario in which a feature
v has K different values which do not change within the same cluster k =
1,2, ..., K. If we were to simply update to calculate dispersions per cluster,
it would lead to a weight of zero as per , even so such a feature seems a
perfect feature to separate clusters. We solve this problem by adding a small
constant to our dispersion. We define the dispersion, Dy, of feature v in cluster

k at a given exponent p as follows:

N
Dk?)p - Zulk : ‘yiv - Ckv|p + 0017 (14)

i=1
where the small constant of 0.01 is used to avoid the case of Dy, = 0. We
think that the features whose value is constant over all entities y; € Y should
be addressed in the data pre-processing stage, rather than by the clustering
algorithm in question. Using , we can calculate the weight, sg,, of feature

v at cluster k as follows:

Vorpe 1am)
kv p=1
skv:<z [Dkuz] ) , (15)

where sy, is subject to the following constraints: Z:}/:l Spp = 1land 0 < s, <1

(for v =1,...,V), for each k = 1,2,..., K. The only division by zero in

would happen if p = 1. In this case, the minimization of our objective function
implies that for a given cluster k, only a single feature, that with the highest

Dy, has the weight of one, whereas all other features have the weight of zero.
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The algorithm used to iteratively minimize our objective function, given by

Equation , is presented below:

1. Randomly select K entities y; € Y and set their values as initial centroids
c1,C2, ..., Ci. Set each weight sy, randomly, but subject to 21‘1;1 Skp = 1
and 0 < spy <1 (forv=1,...,V), foreach k=1,2,.... K.

2. For each entity y; € Y and cluster kK = 1,2, ..., K, set u;, = 1 iff ¢ is the
closest centroid to y; as per Equation , otherwise set u;z =0 .

3. Update each centroid ¢, for k = 1,2, ..., K to the L, centre of its cluster. If
there are no changes, then stop the algorithm and output u, ci,co, ..., cx,
and s.

4. Update each feature weight sx,, applying Equation . Go back to Step
2.

Atp=1, p=2andp = oo, the L, center of a cluster is given by the component-
wise median, mean and midrange, respectively. For other values of p the center
can be obtained using a steepest descent algorithm [20], since we can assume

p>1

4. Setting of the experiments

The original paper introducing the use of the distributed centroid in WK-
Means [I8] does not deal with data normalization. Its authors probably assume
that the normalization is carried out during the feature weighting process, which
may not be true in all cases. The distance between y;, and a c, for a categorical
v, given by ©(Yiy, Cky) I , has a maximum of one. However, if v is numerical,
the maximum distance, given by Zl/:l |Yiv — Cro|, Will tend to the range of v.

We can solve this problem by normalizing each numerical feature in such
a way that the maximum distance between entities and centroids is the same,
whether v is numerical or categorical. Often data sets are normalized using

the popular z-score standardization. In this, y;, = %, where stdev(y,)

10
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represents the standard deviation of feature v over y; € Y. In this study, we

chose a different normalization, which is as follows:

Yiv — gv
range(y,)’

where gy, represents the average value for v over each entity y; € Y. The

above equation guarantees that any numerical feature v € V will have a range
of one. This means that the maximum distance between any entity and its
corresponding centroid will tend to one.

The choice of the range, rather than of the standard deviation in has
yet another interesting characteristic: unlike the latter, the former is not biased
towards unimodal distributions [2I} [6]. Consider the following example of two
features, a being unimodal and b being bimodal. The standard deviation of b
will be higher than that of a, which means that after the standardization the
values of b will be smaller than those of a, thus having a smaller contribution
to any distance-based clustering process. However, b is clearly a feature that
can be used to discriminate between natural groups sought by any clustering
algorithm.

We have applied the above normalization to the numerical features of all
12 real-life data sets we analyzed in this study. Table [I| describes each data
set in terms of its number of entities, numerical features, categorical features
and clusters. These data sets are freely available at the popular UCI machine
learning repository [22].

Our experiments involved four different partitioning algorithms, which were
the following: (i) K-Means; (ii) WK-DC; (iii) WK-DC S, a version of WK-DC
using cluster dependant feature weights; and (iv) MWK-DC.

1. K-Means
Traditional K-Means algorithm was carried out on the data sets with
numerical features only. We have run 100 experiments per data set.

2. WK-DC

As originally introduced in [I§]. We have run 100 experiments per data

11
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Table 1: 12 real-life data sets from the UCI machine learning repository [22] used in our

experiments
Numerical Categorical
Entities Features Features  Clusters
Australian credit approval 690 6 8 2
Balance 625 0 4 3
Breast cancer 699 9 0 2
Car Evaluation 1728 0 6 4
Ecoli 336 7 0 8
Glass 214 9 0 6
Heart Disease 270 6 7 2
Tonosphere 351 33 0 2
Iris 150 4 0 3
Soya 47 0 35 4
Teaching Assistant 151 1 4 3
Tic Tac Toe 958 0 9 2
set.
3. WK-DC S

A version of WK-DC in which a given feature v has K weights. We have
added a small constant to each feature dispersion, according to Equation
, to avoid issues related to features having the same value within a
cluster. We have also run 100 experiments per data set.

4. MWK-DC
As described in Section We have run 100 experiments per value of

p=1{1.0,1.1,12,...,5.0}.

Several previous works, including our own, measured the quality of algo-
rithms by estimating the proportion of correctly classified entities [20] [I§].
However, we acknowledge that in some cases the estimated rate might be a
poor measure for assessing the quality of a clustering solution [23]. Thus, in
this study, we use the adjusted Rand index (ARI)[24] to measure the quality of

clustering. We have also decided to discard any experiment in which we did not

12
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obtain the expected number of clusters.

Note that all the four algorithms we consider here are non-deterministic.
This means that we not only have to run them many times, but also that we
have to find what the best run was. Two sets of experiments were carried out.
In the first, we were interested in determining which algorithm was the best in
terms of cluster recovery. We ran each algorithm and compared its clustering
solution to the known reference clustering by using the ARI index. Of course
this approach is not feasible in real life. Thus, we also needed a method to
identify optimal cluster distribution without any prior knowledge. This was
investigated in our second set of experiments, in which we attempted to recover
the correct clustering without considering any reference solution. We used the
Silhouette width [25] to find this solution in unsupervised way:

N

- yz)
Zmaw{a (i), b(yi)}’ a7)

where a(y;) is the average distance between y; and all the entities in its cluster,
and b(y;) is the lowest average distance between y; and any cluster not includ-
ing y;. Note that —1 < si < 1, and the closer si is to one, the better the
obtained clustering solution is. Here, the distance between y;,, and y;, where
Yi,y; € Y, for a numerical feature v is given by the squared Euclidean dis-
tance d(Yiv, Yju) = (Yiv — Yju)?. Clearly, calculating si in a data set containing
categorical features requires a distance measure that also supports categorical
features. For this reason, we calculated the dissimilarity between categorical

features using Equation and initializing each w}, using Equation @

5. Results and discussion

We conducted our simulations with the WK-DC, WK-DC S and MWK-DC
algorithms which were applied to analyze the experimental data sets in Table
Moreover, we also carried out experiments using the traditional K-Means
algorithm on the data sets containing solely numerical features. We did not

include in our simulations other popular clustering algorithms capable of dealing

13
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with data sets containing categorical data, such as k-prototype, SBAC and KL-
FCM-GM [19, [10} 17], because WK-DC was already shown to outperform all of
them [I8§].

Table 2| shows the results of our experiments in terms of the adjusted Rand
index (ARI) and the number of completed iterations necessary for convergence
(Ttr). We were looking for an algorithm that produces high values of ARI with
a small number of iterations. We limited the number of iterations in each al-
gorithm to a maximum of 100. In the cases where more than one optimum
clustering solution was obtained (i.e., where different clustering solutions corre-
sponded to the same optimum value of SI), we reported their average ARI and
average number of iterations the algorithm took to converge. Table [2[ has two
main columns: (i) Optimal run, in which the optimal clustering is that with
the highest ARI; and (ii) Optimal SI run, a totally unsupervised experiment in
which the optimal clustering is that with the highest Silhouette width (SI).

Some interesting patterns can be observed when considering the results of
Optimal run. WK-DC S produced equivalent or higher values of ARI than WK-
DC for nine of the twelve data sets we considered. Our MWK-DC algorithm did
even better, providing identical or higher values of ARI than WK-DC for eleven
of the twelve data sets. WK-DC outperformed MWK-DC in a single data set,
the Heart disease, with a difference of 0.045 in ARI. Table[2]also shows that WK-
DC was unable to generate a clustering solution with the expected number of
clusters for the Ecoli data set. This is possibly related to the fact that WK-DC
does not minimize its distance when calculating centroids.

In terms of the number of iterations, WK-DC S provided identical or better
results than WK-DC for nine data sets, whereas MWK-DC produced com-
petitive or better results than WK-DC for ten of them. We believe that our
alignment between the distance used to assign entities and the minimization
used to find centroids was the key factor to achieve the reduction in the number
of iterations. We can also see that WK-DC was the only algorithm to reach an
optimum solution without converging when applied to the Teaching Assistant

data set.

14
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Our second set of experiments included a totally unsupervised clustering
approach based on our modified Silhouette index capable of dealing with data
sets containing categorical features. In these experiments WK-DC S generated
mixed results, being equivalent or better than WK-DC in terms of ARI for six
data sets only. However, our MWK-DC algorithm was equivalent or better than
WK-DC in terms of ARI for nine data sets. In terms of the number of iterations
the algorithms took to complete, WK-DC S provided equivalent or better results
than WK-DC for eight data sets, whereas MWK-DC was equivalent or better
than WK-DC for seven of them.

Figure [I]illustrates the relationship between the ARI index corresponding to
the clustering solution provided by our MWK-DC algorithm and the exponent
p. Here we present the maximum ARI per value of p (solid line), analogous to
our experiments in Table 2] under Optimal run, as well as the ARI estimated
using the Silhouette width for each value of p, analogous to our experiments
under Optimal SI run. Note that sometimes the estimated ARI in Figure
appears to be higher than in Table This is due to the fact that the former
shows the ARI corresponding to the highest SI at each p, while the latter reports
a single ARI related to the highest SI value obtained over all possible values of
p. In all experiments, clusterings that did not contain the expected number of
clusters were disregarded. We can see that this was a particular issue for the

Ecoli data set at p < 2.5.

6. Conclusion

Most of the clustering algorithms have been designed to deal with data sets
containing numerical features only. In this paper, we introduce the Minkowski
Weighted K-Means with distributed centroids (MWK-DC), a feature weight-
ing algorithm capable of dealing with both numerical and categorical types of
features. Our algorithm extends the approach of Weighted K-Means with dis-
tributed centroids (WK-DC) [18] in three different ways: (i) it allows for an

intuitive idea that one feature v may have different degrees of relevance at dif-

15



Table 2: Experimental results. Section Optimal run: the best results provided by MWK-DC
over all considered values of p = 1.0, 1.1, ... , 5.0 are shown. Section Optimal SI run: SI
(Silhouette) values were calculated over all considered values of p in MWK-DC (unsupervised

clustering); the results corresponding to the clustering solution that maximized SI are shown.

Optimal run Optimal SI run

ARI Itr p ARI* Itr P Si

g K-Means - - - - - - -
% WK-DC 0.2976 8 - 0.0048 3 - 0.9444
% WK-DC S 0.5119 6 - 0.0001 2 - 0.9999
< MWK-DC 0.5077 3 1.5,1.6,2.1-2.4,2.6 0.1679 2 1.1,1.2 1.0000

o K-Means - - - - - - -
é WK-DC 0.1545 2 - -0.0011 1 - 0.1467
E WK-DC S 0.1545 3 - 0.0553 2 - 0.9299
MWK-DC 0.2588 1 4.0 0.0553 2 5.0 0.9594
o K-Means 0.8823 4 - 0.8823 4 - 0.9107
- WK-DC 0.7400 6 - 0.7350 8 - 0.6510
§ WK-DC S 0.6195 3 - 0.2015 3 - 0.9462
A MWK-DC 0.8552 5 5.0 0.5747 6 3.8 0.9595

. K-Means - - - - - - -
# WK-DC 01323 2 - 0.0407 3 - 0.3142
% WK-DC S 0.1601 2 - 0.0842 4 - 0.9865
© MWK-DC 0.2236 3 13 ps 0.0081 4 1.1-1.3 1.0000
K-Means 0.2583 3 - 0.1735 8 - -0.1150
E WK-DC 0.2895 13 - 0.2386 13 - 0.5058
U WK-DC S 0.2611 5 - 0.2069 13 - 0.1703
MWK-DC 0.3126 11 4.4 0.2639 6 4.3 0.7976
K-Means 0.6357 13 - 0.4537 8 - 0.1968
% WK-DC NaN NaN - NaN NalN - NaN
LYJU WK-DC S 0.0318 2 - 0.0318 2 - -0.0352
MWK-DC 0.7989 22 3.8 0.6522 11 5.0 0.6845

K-Means - - - - - - -
E WK-DC 0.3938 5 - 0.0280 1 - 0.8656
E WK-DC S 0.4323 10 - 0.1807 2 - 0.9996
MWK-DC 0.3485 5 4.6 0.0932 3 1.1,1.2 1.0000
¢ K-Means 0.2038 4 - 0.2038 4 - 0.4125
% WK-DC 0.2092 3 - 0.2092 4 - 1.0000
§ WK-DC S 0.3833 6 - 0.2092 6 - 0.9978
S MWK-DC 0.6178 14 4.9 0.2092 3 1.1 1.0000
K-Means 0.9222 2 - 0.8668 4 - 0.8640
@ WK-DC 0.8512 9 - 0.7445 4 - 0.5846
= WK-DC S 0.8680 4 - 0.5685 2 - 0.6354
MWK-DC 0.9222 4 1.1 0.8857 8 3.5 0.8663

K-Means - - - - - - -
a WK-DC 0.9533 6 - 0.9366 5 - 0.7855
(g WK-DC S 0.8178 3 - 0.3211 3 - 0.9134
MWK-DC 1.0000 2 33 ps 0.9533 2 4.9 0.9778

<ti K-Means - - - - - - -
%D WK-DC 0.0320 100 - 0.0248 100 - 0.4611
é WK-DC S 0.0638 3 - 0.0477 3 - 0.9875
ﬁ MWK-DC 0.0820 5 3.3,3.8,4.6,4.7 0.0477 3 4.6 0.9949

g K-Means - - - - - - -
E WK-DC  0.1515 5 - 0.0692 9 - 03071
% WK-DC S 0.1515 2 - -0.0184 2 - 0.9283
ﬁ MWK-DC 0.1515 3 35 ps -0.0128 2 5 0.9858
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(d) Car evaluation (e) Ecoli (f) Glass

(j) Soya (k) Teaching assistant (1) Tic tac toe

Figure 1: Maximum possible ARI per data set at each value of p (solid line) and estimated

ARI (using the Silhouette) per data set at each value of p (dashed line).
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345

350

355

360

365

370

ferent clusters; (ii) it uses the L, metric with the same exponent p in the weight
and distance calculation. Thus, each feature weight can now be seen as a fea-
ture re-scaling factor for any considered exponent p; and (iii) it calculates the
centroids by minimizing the metric used in the distance calculation. In our case,
we proceed by minimizing the L, metric.

Taking into account that both MWK-DC and WK-DC are non-deterministic,
we ran them 100 times for each experimental data set and then selected the
solutions maximizing the popular Silhouette width index. Using the concept
of distributed centroids, we extended the classical application of Silhouette to
support both numerical and categorical features.

Our results suggest that MWK-DC generally outperforms WK-DC as well as
its subclustering version, WK-DC S, in terms of both cluster recovery, measured
using the adjusted Rand index and the number of completed iterations required
for convergence. Furthermore, we still see potential for extension of MWK-DC,
considering its version allowing different distance biases at different clusters as
well as its version including the fuzzy Minkowski Weighted K-Means procedure

26].
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