Optimal Variable Weighting for Ultrametric and Additive Trees and K-means Partitioning: Methods and Software

Makarenkov, Vladimir et Legendre, Pierre (2001). « Optimal Variable Weighting for Ultrametric and Additive Trees and K-means Partitioning: Methods and Software ». Journal of Classification, 18(2), pp. 245-271.

Fichier(s) associé(s) à ce document :
[img]
Prévisualisation
PDF
Télécharger (112kB)

Résumé

De Soete (1986, 1988) proposed some years ago a method for optimal variable weighting for ultrametric and additive tree fitting. This paper extends De Soete’s method to optimal variable weighting for K-means partitioning. We also describe some new features and improvements to the algorithm proposed by De Soete. Monte Carlo simulations have been conducted using different error conditions. In all cases (i.e., ultrametric or additive trees, or Kmeans partitioning), the simulation results indicate that the optimal weighting procedure should be used for analyzing data containing noisy variables that do not contribute relevant information to the classification structure. However, if the data involve error perturbed variables that are relevant to the classification or outliers, it seems better to cluster or partition the entities by using variables with equal weights. A new computer program, OVW, which is available to researchers as freeware, implements improved algorithms for optimal variable weighting for ultrametric and additive tree clustering, and includes a new algorithm for optimal variable weighting for K-means partitioning.

Type: Article de revue scientifique
Mots-clés ou Sujets: Additive tree; K-means partitioning; Optimal variable weighting; Ultrametric tree
Unité d'appartenance: Faculté des sciences > Département d'informatique
Déposé par: Vladimir Makarenkov
Date de dépôt: 23 mars 2016 13:13
Dernière modification: 20 avr. 2016 20:01
Adresse URL : http://www.archipel.uqam.ca/id/eprint/8021

Statistiques

Voir les statistiques sur cinq ans...