Thin monodromy in Sp(4)

Brav, Christopher et Thomas, Hugh (2014). « Thin monodromy in Sp(4) ». Compositio Mathematica, 150(03), pp. 333-343.

Fichier(s) associé(s) à ce document :
[img]
Prévisualisation
PDF
Télécharger (308kB)

Résumé

We show that some hypergeometric monodromy groups in Sp(4,Z) split as free or amalgamated products and hence by cohomological considerations give examples of Zariski dense, non-arithmetic monodromy groups of real rank 2. In particular, we show that the monodromy of the natural quotient of the Dwork family of quintic threefolds in P^{4} splits as Z*Z/5. As a consequence, for a smooth quintic threefold X we show that a certain group of autoequivalences of the bounded derived category of coherent sheaves is an Artin group of dihedral type.

Type: Article de revue scientifique
Mots-clés ou Sujets: algebraic geometry, Structure of families, monodromy
Unité d'appartenance: Faculté des sciences > Département de mathématiques
Déposé par: Hugh R. Thomas
Date de dépôt: 18 mai 2016 19:48
Dernière modification: 30 mai 2016 20:11
Adresse URL : http://www.archipel.uqam.ca/id/eprint/8480

Statistiques

Voir les statistiques sur cinq ans...