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RESUME

11 est question dans le présent document de certaines familles d’objets mathématiques dont la cardinalité
se dénombre par la célebre suite des nombres de Catalan. Nous nous concentrons sur certaines propriétés
du treillis de Tamari. Nous considérons aussi les relations entre ces objets et les fonctions de station-
nement. Afin d’étendre ces constructions 2 d’autres contextes, nous introduisons la notion de « tube de
graphe ». Pour les graphes de chemins, ceci retrouve la configuration de Catalan. Par cette analogie,

nous pouvons généraliser 2 d’autres familles de graphes tels que les graphes complets, cycliques, etc.

Mots-clés: Nombre de Catalan, objets de Catalan, treillies de Tamari, polyn6me de zeta, fonctions de

stationnement, tube de graphe.
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ABSTRACT

In the present document we investigate families of mathematical objects counted by the famous sequence
of Catalan numbers. We are interested in properties of some structures on such families known as the
Tamari lattices. We consider relations between those objects and parking functions. To extend such
constructions to other contexts, we introduce the notion of "graph tubing". For path graphs, this recovers
the Catalan setup. Using this analogy, we can generalize the theory to other nice families of graphs such
as complete graphs, cycle graphs, etc.

Keywords: Catalan numbers, Catalan objects, Tamar lattice, zeta polynomials, parking functions, graph

tubing.
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INTRODUCTION

Catalan numbers have always been considered as an important integer sequence in combinatorics with
several characterization, and there are several interesting families of mathematical objects counted by
these numbers, which are named Catalan objects. On the other hand, Dov Tamari in [15, 1962] in-
troduced a lattice structure on the family of well-formed parentheses whose number of elements is the
Catalan number. There are some interesting results on the Tamari lattice such as Chapoton’s formula to
count the number of intervals in this lattice. Furthermore, there are other combinatorial notions such as
Parking functions, whose connections to Catalan objects are interesting. Any time a new family emerges
whose elements are enumerated by the Catalan numbers, we are motivated to find the associated Tamari
order on its poset.

In [5, 2005] M. Carr and S. Devadoss introduced the notion of "graph tubing" in which, specially for
path graphs, the number of maximal tubings is the Catalan number. Hence maximal tubings of a path
graph is yet another class of Catalan objects. In [11, 2012] M. Ronco described a partial order on the set
of tubings of a simple graph, which generalized the Tamari order on the set of tubings of path graphs.
During the same year, S. Forcey in [8] generalized the Tamari order, and the weak order on permutations,
to maximal tubings of a graph.

In the present work, our goal is to relate parking functions to maximal tubings of path graphs as a recent
Catalan object. This opens the possibility of considering parking functions for maximal tubings of other
"nice" families of graphs, such as complete graphs, cycle graphs, etc.

The first chapter of this monograph recalls some basic combinatorial notions namely: posets, intervals
in posets, lattices, the zeta polynomial, Catalan numbers, and the symmetric group S,,. In the second
chapter, we introduce some of the Catalan objects such as Dyck paths, Dyck words, binary trees, and
complete binary trees. Although there are direct individual proofs that the cardinality of Dyck paths,
binary trees or other Catalan families are indeed given by Catalan numbers, we will rather prove this for
just one case (Dyck paths), and then show that there are bijections linking other families to this specific
one. In Chapter 3, we translate the Tamari lattice structure to the context of the considered families, and
interpret the order directly in the relevant context. In Chapter 4, the properties of parking functions are
discussed, and we consider how parking functions may be defined directly in each context. Also we ex-
tend the enumeration of parking functions using zeta polynomials. We start Chapter 5 with the definition

of tubing and its properties, and also we recall how to count the number of maximal tubings for some



special families of graphs, such as path graphs, complete graphs, and cycle graphs. We describe the
Tamari order defined by Forcey, and continue with the spirit of parking functions in terms of maximal

tubings of path graphs.



CHAPTER I

SOME BACKGROUND IN COMBINATORICS

In this chapter we introduce some combinatorial terminology such as graphs, posets, intervals in posets,

lattices, zeta polynomials, Catalan numbers, and symmetric groups S,, which will be used later .

1.1 Graphs

A (simple) graph is a pair of sets, denoted G = (V, E), where V is a finite set and E is a subset of (g),
which stands for the set of pairs of elements in V. The set V is called the set of vertices (or nodes), and
E is called the set of edges of G. The edge e = {u,v} C (‘;) is also denoted by e = uw, and then u is
said to be adjacent to v, and wu is said to be incident to e. If the edges of G are directed, then the graph is
called an oriented graph, and the edges are called arcs. For example, Figure 1.1 represents a graph with

set of vertices V = {v1,v2,vs,v4,vs } and set of edges E = {v1v3, vavs, v3v4, VaVs, V15, U2Us }.
Vg
v3

Us

vz

U1
Figure 1.1: A graph.

What happens in the structure of a graph is satisfying the following function:
Sv x Graphs[V] — Graphs[V]

0,G—o-G:=(V,o-E)



such that:

o Sy :={o|o:V — V}. (see Section 1.4)
e Graphs[V] := {(V,E) | EC (})}.

e o-E:= { {U(u)’a(v)} I {u,v} € E}.

Then two graphs G; and G are isomorphic if and only if there exists a function ¢ in Sy such that
0.G1 = Ga, denoted G; ~ Ga. This is an equivalence relation. Hence a graph type (shape) is an

equivalence class for this isomorphism relation
[G] € Graphs[V]/~.

We will informally refer to an equivalence class [G] as an unlabeled graph. Indeed, it is customary to
draw unlabeled graphs with undistinguishable vertices (simple dots).

A subgraph of G, is a graph whose vertices are a subset of the vertex set of G, and whose edges are a
subset of the edge set of G. A subgraph, G, of G, is induced, if for any pair of vertices u and v of G,
uv is an edge of G if and only if uv is an edge of G. For example, Figure 1.2 shows a subgraph, and

induced subgraph on the red vertices of a given graph.

(a) Subgraph (in red). (b) Induced subgraph (in red).

Figure 1.2: Illustration of a subgraph (left) and an induced subgraph (right) of a graph.

A graph is connected, if there is a path between each pair of the vertices. Otherwise, the graph is dis-
connected and its largest connected subgraphs are called connected components of graph. For example,

Figure 1.3 shows a graph with three connected components.

In the following we mostly consider some special families of graphs, such as:

e Path graphs: a graph with vertex set V = {vy, ..., v, } such that the set of edges is

{{vi,vita}|1<i<n—1}L



Figure 1.3: A graph with three connected components.

e Complete graphs: a graph with all possible edges.

e Cycle graphs: a path graph with extra edge {v; vy, } between the first and last vertices.

152 Posets

Let us now recall some background from the theory of posets, which plays an important role in enumer-
ative combinatorics. An excellent reference for general theory of posets is [12, Chapter 3]. A partially
ordered set P, or poset for short, is a set P together with a binary relation "=<", satisfying the following

relations:

e Forall z € P, z <X z. (reflexivity)
o Ifz <y, and y < z, then = y. (antisymmetry)

o If x Xy, and y < z, then = < z. (transitivity)

Two elements z,y € P are comparable if ¢ X y or y X z, otherwise = and y are incomparable. An
element z of a poset is called maximal if for all element y € P, z £ y, and z is minimal if for all
elementy € P, y A z. If maximal and minimal elements are unique in the poset, are called respectively
maximum and minimum, denoted 1,0. A chain in a poset is a subset C C P such that any two elements
in C are comparable, and it is called multi-chain if it has repeated elements. A chain with n elements is
a chain of length n — 1. Let 2 and y be two distinct elements of a poset P. We say that y covers z or z is
covered by y, denoted z < y, if z < y (i.e., z < y and = # y) and no element z satisfies z < z < y. A
finite poset is determined by a Hasse diagrams; this is the oriented graph whose vertices are the elements
of the poset, and whose arcs correspond to the covering relations such that, if z ~<: y then y is drawn
above z. So the Hasse diagram is directed in the plane from bottom to top.

For example, Figure 1.4 is the Hasse diagram of the poset of subsets of {1,2,3}. The order relation in
this poset is set inclusion: z < y if £ C y.The minimum element is { }, and the maximum element is
{1,2,3}. For instance, { } < {3} = {2, 3} is a chain with three elements such that {2,3} covers {3}

but it does not cover { }.



{1,2,3}

{1,2} » {2,3}

{1} » {3}

i

Figure 1.4: The poset of subsets of {1, 2, 3} under inclusion.

For a partially ordered set (P, <), letz,y € P withz <X y. The set [z,y] = {# € Plz < 2 X y} is
called an interval of P. The cardinality of [z, y] is the number of multi-chains between z and y with
three elements. For example, in the poset Figure 1.4, [{ }, {2,3}] = {{ }, {2}, {3}, {2, 3}} is an interval
with four elements. Hence we have four following multi-chains between { } and {2, 3}:

{}z{}1={23}

{}={3}=x{2,3}

{}={2}=x{2,3}

{}={2.3} {23}
In the section 1.1, we introduced path, complete, and cycle graphs as a special families of graphs, there-
fore it would be interesting to consider them as a poset and study the number of multi- chains with three

elements between minimum and maximum elements of the poset.

v AN vt
N\ ‘/\'
vt._ll Vi1 l\ Iy Vi1 4 V-2
: 3 :3\‘1/\/"\ \ Ill \\
v ¢ V2 <I’<A \ e ,\’
\ "

u e | // (5 .\'/. Vg
/,, /
| 4 G//
Vo Vo /

G G Vo

Figure 1.5: A path, complete, and cycle graphs in terms of poset.



Figure 1.5 illustrates a path graph G, a complete graph G’, and cycle graph G as a poset with ¢ + 1
elements on vertex set {vg, v1, ..., U } where vg = 0 is the minimum element, and v; = 1 is the maximum
element. The cardinality of [0, 1] in every mentioned poset is:

0,1)¢ = {vo,v1,v2, 0y ve-1,9} 5 |[0, 1]l =t +1.

[0,1le = {wo,v1,v2, ., ve—1,v} ; |0, 1) =t +1.

[0, 1lar = {vo,v1,v2, o, Ve—2,ve—1,u} 5 |[0,1]gn| =2+ 1.
There are ¢ 4+ 1 multi-chains with three elements in each poset G, G’, and G”:

4
vo X vg 3 v

v XU XUt

vo X vz XUt

v X U1 X Ut

(Vo X v X v

Similarly, for other vertices of G and G’ we have:
[0, ve-1]e| = |0, ve—a)er| = t.
[0, ve—2)e| = |0, ve—2)or| = — 1.

|10, vi)e| = |[0,m1]er| = 2.
|16, vole| = |10, voler| = 1.

Hence the number of intervals in the posets G and G’ is

t+1
(t+1)(t+2)
k=r—"2— 7

To find the number of intervals in poset G”, it suffices to consider poset G” as a join of two left and
right path posets such that the left one has ; vertices, and the right one has ¢, vertices (except vp and
v;). Then count the number of intervals for each path poset such as what we did for poset G. Hence the
number of intervals in poset G” is

ti+1 trt1
E+1)+ > k+ > k+1
k=2 k=2

1.2.1 Zeta polynomials

One of the subjects that has useful results on posets is the zeta polynomial. First we define some related

constants. For a poset (P, <), suppose z,y € P, then let D% (z, y) be the set of sequences called (weak)



chain defined as follows:
DE(z,y) == {(20;--rTn) |z =20 <21 < ... < Zn =Yy}
and let C3(z,y) be the set of sequences called multi-chains defined as follows:

Ca(z,y) = {(z0,..rZn) |[z2=20 221 X ... 220, =y}

The zeta polynomial, Zp(n), for a poset P with minimal and maximal elements 0,1 respectively, is
defined as follows:

Zp(n) == |C3(0,1)|.
As a polynomial in n, we have (see [12]):
Zp(n) =" (:) D%, 1)) a2
k>0
For example, for the poset P in Figure 1.6 with minimum element ¢ and maximum element e, the zeta
polynomial is:

Zp(n) = -fl—s(ns +6n2 —n).

One gets the following binomial coefficient expansion:

Zp(n) = n+3<’2‘) £ (g)

This is so since:
Zp(n) = (1) {(a, )}
+ (3) H(a,b, ), (a,c,€), (a,d,€)}|
+ () H@b,ce)}l.

Figure 1.6: Poset P .

As aresult, we have Z, (2) = 5, so it means that the multi-chains with three elements count the elements

of poset P, and Z,(3) = 13 which means that the multi-chains with four elements count the intervals of



the poset.
We can also calculate the zeta polynomial for posets of a path graph, a complete graph, and a cycle graph

of Figure 1.5 with n + 1 vertices:

ZG(n)=n+(t—1)<;) +(t—2)!<g) +(t—3)!<2) + -

This is so since:
Zg(n) = (1) {(vo,v)}l
+ (5) {(vo,v1,vt), (vo,v2,2¢), ..., (V0,ve—1,ve) }
+ (3) {(vo,v1,v2,vt), (vo,v1,v8,), ..., (V0, V1, Ve—1,e)

(vo, v2, v3, ), (Yo, U2, V4, V), ..., (Vo, V2, Ve—1,Vt)

(vo, Ve—2,ve—1,v¢) }|
+ o
The Zg+(n) is the same as the Zg(n). For calculate Zg~(n), G” as a join of two paths that the left one
contains t; vertices, and the right path contains ¢, vertices (except vp and v;), we have the following

polynomial:

Zgn(n) = n+(t-1) (’2’) +((tt-1)!(Z)+(tz—2)!<2)+- --)+((t,—1)!<g)+(t,—2)!<2)+- )

22 Lattices

An important class of posets is known as lattices. To introduce lattices, first recall some definitions. Let
(P, %) be a partially ordered set. An upper bound of z,y € P is an element 2 € P satisfying z < 2 and
y =< 2. A least upper bound of = and y is an upper bound z such that every upper bound 2’ of = and y
satisfies z < 2/. A least upper bound of z and y is unique if it exists, and is called their join, denoted
z V y. Similarly, a lower bound of z,y € P is an element z € P satisfying z < z and z < y. A greatest
lower bound of  and y is a lower bound z such that every lower bound 2’ of z and y satisfies 2’ < z. A
greatest lower bound of « and y is unique if it exists, and is called their meet, denoted = A y.

A lattice is a poset for which every pair of elements has a join and meet. A lattice as an algebraic

structure in terms of the operations V and A, satisfies the following axioms:

e Commutative law: zVy=yVz,zAy=yAz.
e Associativelaw: zV (yVz) = (zVy)Vz,zA(yAz)=(zAy) Az

e Absorption law: zA (zVy)=z=zV (zAy).
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e Idempotentlaw: zVz =2z Az =z.

s zAy=z & zVy=y & Y.

For example, the poset in Figure 1.4 is a lattice that {1} v {3} = {1,3}, and {1} A {3} = {}.

13 Catalan numbers

As illustrated by a famous exercise in Stanley’s book [13], one of the best known integer sequences in

combinatorics is the sequence of Catalan numbers. Catalan numbers are defined by
1 2n
= g 1.3.1
e n+1 ( n ) ( )

In 1838, Belgian mathematician Eugéne Charles Catalan was the first to obtain what is now a standard

formula for Catalan numbers. Small values of C(n) are:
1,1,2,5,14,42,132,429,1430, ...
The Catalan numbers satisfy the following recurrence relation for n > 0 where C(0) = 1,

Cln+1)= 3OO — k). 132
k=0

As is frequently useful in combinatorics, we can try to calculate or get a formula for C(n) by using a

generating function. This means that for a power series B(xz) defined by
B(z) := ZC(n)z",
n
in terms of the generating function, we have
B(z) =1+ zB(z)?,

which is simply a translation of the recursive definition of Catalan number (for more details see [3]).
We will have many families of objects (grouped by "size"), such that the number of those objects in size
n is equal to C(n). For this reason, we will say that such objects are "Catalan objects". This will be the

subject of the next chapter.

1.4 Symmetric group S,

The symmetric group S,, is the group of bijections of [n] = {1, ...,n} to itself. The cardinality of this set

is equal to n!. A notation for the permutation that sends 7 — I; is

0‘=l1lz.,.ln.
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A k-cycle permutation (or a cycle of length k) is a permutation that sends [; to l;43 for1 < ¢ < k—1
and [ to l;, denoted
(112 ... ).

The same cycle can be written in several ways, by cyclically permuting the /;. For example, it also can

be written as:
(lz l3 lk ll) or (l3 l4 lk l1 lz)

Two cycles (I3 Iz ... Ig) and (1§ 1 ... If,) are disjoint, when the sets {l1,...,1x} and {l1,...,I}, } are
disjoint. Every permutation o € S,, is expressible as a product of disjoint cycles uniquely, which is called
the cycle decomposition of o. For example, o = 25431 in S5 has a cycle decomposition (2 5 1)(3 4).

Let Uf=1 n; = {1,2,...,n} be a partition of {1, 2, ...,n} into k disjoint subsets. Then the corresponding

Young subgroup of Sy, is the subgroup
Spn, X Sy, X ... X Sy,

where Sp,, = {o € S, : o(j) = jforall j ¢ n;}, that consists of |n;|! of such.o. This means that o
permutes the elements of n;, and fixes the elements in the complement {1, 2, ..., n}\n;.

For a permutation ¢ in Sy, an inversion set of o, denoted Inv(o), is the set of pairs (4, j) with i < j and
l; > l;. For example, Inv(c = 312) = {(1,2),(1,3)}, because {; =3 >l =1landl; = 3>l = 2.
The weak order on the symmetric group is a partial order such that for 0,0 € §,,, 0 < 6 whenever
Inv(o) C Inv(6). This poset is a lattice with identity permutation, 123...n as the minimum element, and
the permutation formed by reversing the identity, n nn — 1...321 as the maximum element. The covering
relation o < 6 occurs when @ is obtained from o by transposing a pair of consecutive values of o; a pair

(0i,0;) such that ¢ < j and 0; = o; + 1. For example, Figure 1.7 illustrates the weak order on Sg.

321
312 231

213 132

123

Figure 1.7: Weak order on S3.






CHAPTER II

SOME CATALAN OBIJECTS

Stanley (see [13]) has compiled a list of more than 207 combinatorial objects that are counted by the
Catalan numbers. Much of our story concerns generalisations of the Catalan numbers and families of
mathematical objects counted by these, which we call, Catalan objects. In this chapter we consider five
families of Catalan objects: binary trees, complete binary trees, Dyck paths, Dyck words, and bounded
increasing sequences. We count the number of Dyck paths to see it is equal to the Catalan numbers, and

show that the other Catalan objects bijectively have the same cardinality.

2.1 Binary trees

Recall that a 77¢e is an undirected, acyclic, connected graph. This means that any two nodes are connected
by exactly one simple path. A binary tree is an arrangement of nodes and edges with roor node on the
top, and by descending, every node is connected to at most two nodes, which are said to be its right and
left children. The root node separates the binary tree into two right and left subtrees. Let us denote by
B,, the set of all binary trees with n nodes. The number of nodes of a binary tree is called the size of the
tree. The cardinality of B, is equal to C(n). For example, Figure 2.1 shows the set of binary trees with

three nodes.

A P

Figure 2.1: The set Bg, of binary trees with 3 nodes.
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22 Complete binary trees

A complete binary tree is a binary tree for which every node has either none or two children. Let us
denote by C, the set of all complete binary trees with 2n+ 1 nodes (or n internal nodes). The number of
internal nodes of a complete binary tree is called the size of the tree. The cardinality of C,, is the same as
the cardinality of By, thus they are in bijection. By adding new nodes to a binary tree so that each node
is either a leaf (which has no children) or is an internal node (which has exactly two children), we can
transform a binary tree into a complete binary tree. For example, Figure 2.2 shows the set of complete

binary trees with seven nodes.

R v, - L
0 RN T 2NN i
25 ) Vg ? (S 2 ? .~
- « - < B B «
3y i 33 SR . ‘we’ ‘» ANy
o e = = o . = .

Figure 2.2: The set C3, of complete binary trees with 7 nodes.

2.3 Dyck paths

One of the other Catalan objects that we are interested in is the family of Dyck paths. A Dyck path of
size n is a path in the n x n square consisting of only south and east steps of length one that the path
doesn’t pass above the line y = —z + 7 in the grid. It starts at (0, ) and ends at (n, 0). A walk of length
n along a Dyck path consists of 2n steps, with 7 in the south direction and n in the east direction. By
necessity the first step must be a south step and the last one should be an east step. Let us denote by D,,

the set of all Dyck paths of length n. For example, Figure 2.3 shows the set of Dyck paths of size three.

RN

Figure 2.3: The set D3, of Dyck paths of size 3.

A consecutive sequence of r south steps is called a vertical run of length r. One single south step is a

vertical run of length one, and the absence of south steps is a vertical run of length zero.
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For a Dyck path « € D,,, v(a) = a1a2...a,, is called the composition of e if the i-th vertical run of o
has length a; (for 1 < ¢ < n), and >_;- , a; = n. Clearly y(a) is a composition of n. For example,

Figure 2.4 illustrates a Dyck path in D3 with composition 21.

ro=1

Figure 2.4: A Dyck path with composition 21 .

251 Count the number of Dyck paths

A random path in a square n x n, is a path with 2n steps (n south steps and n east steps, each of length

one) that starts at (0,n) and ends at (n,0). Hence the total number of random paths with 2n steps is

&

n

A Dyck path is the special case of a random path which stays on or below the line y = —z + n. We will
count the number of random paths that begin at (0, ) and go above the line y = —z + n at some point
or totally (we call them, non-Dyck paths). Finally, by subtracting the number of non-Dyck paths from
(%), we reach the number of Dyck paths. The non-Dyck paths hit the line y = —z + (n + 1) at some

point. If we take the first point where the path hits the line y = —z + (n + 1), and reflect the rest of the
path through that line, the reflected part ends at (n + 1,1) on the liney = —z + (n + 2).

S y=—z+(n+2)

Figure 2.5: Non-Dyck path (in red), and its reflected part (in black) .
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For example, Figure 2.5 illustrates a non-Dyck path that hits the line y = —z + 5 at (3, 2), and shows its
reflected path from this point with black.

Furthermore, any random path starting at (0, n) and ending at (n + 1, 1), after 2n steps must cross the
line y = —z + (n + 1) at some point, and by reflecting back up the black part, we reach the non-Dyck
path. This bijection helps us to count the number of non-Dyck paths. In the second random path (which
ends up at (n + 1, 1)), we need to take (n — 1) south steps and (n + 1) east steps out of 2n, hence there

are (,2",) of this type of paths. In conclusion we can count the number of Dyck paths as:

o
2n 2n
ths = —
#Dyck paths (n) (n—l)

_ (2n)! (2n)!
Talnl (n=DI(n+1)!

(2n)! (l_ 1
n

B (n—1!n! n+1
_ (2n)! 1

i (n—l)!n!(n(n+1))
o a2

T n+lnlal - "

24 Dyck words

We can denote a Dyck path by a word w; ... we, which contain n copies of the letter S and contain n
copies of the letter E, known as a Dyck word of length n. The letters S denotes the south steps (0,1)
and letters F denotes the east steps (1,0). Clearly, this gives a bijection between Dyck paths and the

mentioned words. For instance, the Dyck words correspond to Dyck paths of Figure 2.3 are respectively:
{SESESE , SSEESE , SSESEE , SESSEE , SSSEFE}.

If a Dyck word is broken into two parts, the first part has at least as many S’s as E’s; this is equivalent
to the condition "the path never passes above the line y = —z + n" in Dyck paths.

Note that it is also common to show Dyck words by encoding them with 1 for south steps and 0 for east
steps. For a given word w = w ... way, if we denote the number of occurrences of the letter S by |w|s
(resp. |w| g for letter E), then as a direct definition, we can see that a word w is a Dyck word if and only
if

1. w; € {S, E},
2. |lwrws..w;|g > lwiwe..wi|g , foralll < i< 2n,

3. |wls = |wlz.
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25 Bijection between complete binary trees and Dyck paths

The set of Dyck paths of length n and the set of complete binary trees with n internal nodes have the

ST (3™), so there is a bijection between these two Catalan objects. In order

to explain this bijection, we need the definition of a post-order. For a given complete binary tree, there

same cardinality, C(n) =

are many ways for traversing its nodes, one of which is the post-order. The post-order starts traversing
from the left most leaf, and the root node is visited after visiting the left and right subtrees. For example,

the post-order traversal for the complete binary tree of Figure 2.6 is "e, f,g,d, h, ¢, b, ¢,a".

Figure 2.6: The post-order of this tree is ¢, f, g,d, h, ¢, b, i, a .

Since each child in a complete binary tree is hanging on an edge, so the post-order on nodes induces a
post-order on those edges.

Now we introduce thae bijection f : C,, — D,. For a given complete binary tree with 7 internal node_s,
there are n edges going to the left and n edges going to the right. Now by using the post-order traversal
on edges we can associate to a complete binary tree with » internal nodes the word that contains a letter
S for the edges that are going to the left and a letter F for the edges that are going to the right. The

resulting word is a Dyck word.

2 -
‘,‘ —’
¥
d \‘
=G s Joll_ = TS o sl G S e

Figure 2.7: Transforming the complete binary tree to Dyck path.
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We can obtain a Dyck path by translating S°s and E’s respectively into south and east steps. For example,
Figure 2.7 shows the Dyck path of length four that is obtained from the complete binary tree with four
internal nodes (we have shown its post-order traversal in Figure 2.6). Our inverse bijection f~* : D,, —

Ch, is recursively constructed with two cases as follows. Consider two Dyck paths of Figure 2.8:

SSEESSEE SSESSEEE

Figure 2.8: Dyck path which meets the diagonal (left one),

and does not meet the diagonal (right one).

The first Dyck path can be broken into two smaller Dyck paths, SSEE|SSEE, at the point that the path
meets the diagonal y = —x + 4 (except the points (4, 0) and (0, 4)). However, for the second Dyck path,
there is no such a breaking point.

Case 1. The given Dyck path meets the diagonal y = —z + n at points except (n,0) and (0,n). So
the Dyck path breaks into two smaller Dyck paths on the meeting point. In each smaller Dyck path by
translating the S’s and E’s to left and right edges, we obtain the complete binary trees that correspond
to them. Now in order to put them together, we attach the root of the first tree to the left most leaf of
the second tree. If there is more than one break point, the algorithm continues recursively. For example,
Figure 2.9 mentions that we can break SESE into two Dyck path such as 57|SE. So by putting the
root of the tree /' (5/) on the left leaf of the tree f~1(SE), we get the tree f~(SESE).

P

~ 7

root \\l \ 7 ;
/\ A Ny R

7 : N

Figure 2.9: Transforming the Dyck path SESE to a complete binary tree.
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Case 2. The given Dyck path does not meet the diagonal y = —z + n except at the points (n,0) and
(0,n)). Since the first step in the Dyck path is always a south step and the last one is an east step, its
corresponding Dyck word is SM E where the middle part M is a smaller Dyck path. Now the algorithm
is: construct the complete binary. tree for the middle word M, then attach it to the right edge of the tree
f~Y(SE), as it is shown in Figure 2.10.

M

Figure 2.10: General form of transforming Dyck path SM E to a complete binary tree.

Note that constructing the tree f~1(M) might involve applying the algorithm of case 1 (if M = O|0) or
again by applying the algorithm of case 2 (if M = SM’E). For example, the Dyck path SSESESEE
does not cross the diagonal, so first we make the tree for M = SESESE and then add it to the right
edge of the tree f~1(ES). Here building the tree for M is by applying the algorithm of case 1 (M =
SE|SE|SE). The result is shown in Figure 2.11.

Figure 2.11: Transforming the Dyck path SSESESEE to a complete binary tree.

2.6 Bounded increasing sequences

We say that 8 = (by, ..., bs) is a bounded increasing sequence if b; < bj and by < iforalll <14,j < n.
They may be used to bijectively encode Dyck paths. This means that the set of Dyck paths of size n

are in bijection with the set of mentioned sequence (b1 < bz < ... < by,). For a giveri sequence, let 7;
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be the number of times that ¢ occurs in the sequence. Then we associate the following Dyck path to the

sequence:

T1 T2 Tn
P i ey
SRS .5 SUB x5 SEHS i)

%

Here, S denotes a south step (0, 1), and E denotes an east step (1,0). For example, as Figure 2.12 shows,

the weakly increasing sequence 1 < 1 < 1 < 3 corresponds to the Dyck path SSSEESEE:

Figure 2.12: Sequence (1,1,1,3) — Dyck path SSSEESEE .

Our inverse bijection, is constructed as follows. For a given Dyck path, the length of i-th vertical run
is the number of occurrences of ¢ in the corresponding bounded increasing sequence. For example, for
the Dyck path of Figure 2.13, 4(r) = 2,£4(r2) = 0,€(r3) = 1,4(r4) = 1. This means that in the
bounded increasing sequence 1 occurs two times, 2 does not occur, 3 occurs once, and 4 occurs once so

corresponding sequence is 1134.

lenghtof ry = 2

lenght of r2 = 0 ) e A
=
1 T L
a e lenght of 73 = 1 : Il A4 )

73

- lenghtof r4, =1

Figure 2.13: Dyck path SSEESESE — sequence (1,1,3,4).

Let us denote by B, the set of such sequences, which is enumerated by the Catalan numbers. For instance
in the following we show some bounded increasing sequences of length 1,2, 3 and 4 that encode Dyck

paths of the same length.



21

S o 54

32={(1:1),(1’2)} : L‘ ! \_L

={(1,1,1),(1,1,2),(1,1,3),(1,2,2), (1,2,3)}

G

By =1{(1,1,1,1),(1,1,1,2),(1,1,1,3),(1,1,1,4),(1,1,2,2),(1,1,2,3), (1,1,2,4),
(1,1,3,3),(1,1,3,4),(1,2,2,2),(1,2,2,3),(1,2,2,4),(1,2,3,3), (1,2,3,4)}

e o o e
T P T

There are more than 200 other such bijections between the families of mathematical objects counted by

Catalan numbers. Later in Chapter 5, we will see that the set of "maximal tubings of path graphs" is in

bijection with the set of complete binary trees.






CHAPTER 111

TAMARI POSET ON CATALAN OBJECTS

In this chapter we introduce the notion of Tamari lattice, and two of its realizations. First as a poset on
complete binary trees, and then on Dyck paths. Furthermore, we explicitly describe the covering relation
for the families of Catalan objects previously considered in Chapter 2. We also count the number of
intervals of Tamari posets, by using the zeta polynomial to count the number of chains in the Tamari

poset.

3.1 Tamari poset

One of the interesting lattices in combinatorics is the Tamari lattice, introduced by Dov Tamari. Tamari in
his thesis [14, 1951}, considered the set of well-formed parentheses strings of length 2n with n open, and
n closed parentheses such that each opening parenthesis has a uniquely associated closing parenthesis
at its right. For instance, the possible well-formed parentheses strings of length 6 with those condition
are ()00, ()0, 0€0), (00), ((0)). Later in [15, 1962], he partially ordered this set with the covering
relation ( )( ) — (()), in the right-to-left direction. This poset with the described relation is a lattice that
is know as the 7amari lattice, denoted 7,. The property that makes the Tamari lattice one of the most

controversial issues of combinatorics is its cardinality that is given by the n-th Catalan number:

Number of elements of 7, = ; (2"') .
n+l\n

These lattices possess realizations as special polytopes’, called "associahedra", which appeared in Stash-
eff’s thesis in 1961. Thus the 1-skeleton 2 of the n-dimensional "associahedron” corresponds to the
Hasse diagram of 7, (see [10] for more details). For example, Figure 3.1 indicates the Tamari lattice 73

which has five elements.

! A polytope is a geometric object with fiat sides that exists in any number of dimensions.

21-skeleton of a polytope is the set of vertices and edges of that polytope.
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(O

Figure 3.1: The Tamari lattice 73 .

There are many realizations of the Tamari lattice as a partial order on "Catalan objects". In this chapter,
we will study the covering relations in posets of complete binary trees, Dyck paths, and Dyck words. It
is clear that, by the bijection between complete binary trees and Dyck paths, the Tamari lattice of one
can be obtained from the other.

The first result about the intervals of the Tamari lattice (i.e. pairs [P, @] such that P < Q for P,@ € T,)
was from Chapoton in [6]. He proved that intervals in the Tamari lattice are enumerating by the following
formula:

2 4n+1
Number of Intervals of 7, = m ( ATy ) : (3.1.1)

which gives the following sequence:

1, 3,13, 68,399, 2530, ... (see https://oeis.org A000260)

For example, for the Tamari poset 73 in Figure 3.2, the number near each vertex is the number of intervals
with that vertex the top of the interval. Hence the total number of intervals in 73 is 1+2+3+5+2 = 13

that satisfies equation (3.1.1) forn = 3.

2 ®

[4,4]
[4, B], B, B] ®c

.018.01,00,01 ' o 2
[A, D), [D, D)

[4, B, [B, 1, C, B, D, B, [E, E] O,

Figure 3.2: The enumeration of intervals in Tamari lattice 73 .
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Also, we can calculate the zeta polynomial by equation (1.2.1) for Tamari posets. For instance we have
Zr(n) =1

Zr(n)=1+n.

Zri(m) =n+3(3) + (3)-

Zr,(n) =n+12(3) +29(3) +26(F) +11(3) +2(3)-

Table 3.1 illustrates some values of the zeta polynomial for Tamari posets, denoted Z; (k). The second
column of the table is the Catalan sequence which counts the number of multi-chains from 0to1of
length two in each Tamari poset. The third column of table is the sequence 3.1.1 that counts the number

of intervals of each Tamari.

k
) il 3 |l & & 5
2
1 TESL 1 1 1l
2 1712 (3 4 5
3 1({5 [13| 26 45
4 1 (14 | 68 | 218 | 556

Table 3.1: Some values of the zeta polynomials for the Tamari posets 71, 72, 73, and 73 .

35 Tamari poset on binary trees

The Tamari order on the poset of binary trees is rotation operation. As it is shown in Figure 3.3, if a

"on

complete binary tree T" is composed of a root "e", and a left subtree "e", then the right rotation of ¢ on
"e" means replacing (AeB)eC by Ae(BeC() in T (note that A, B or C might be empty). Hence, this is

associativity.

Figure 3.3: Right-rotation.
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Consider two complete binary trees ¢ and £, of the same size. We say that ¢2 covers ¢; in the Tamari

lattice if and only if ¢5 can be obtained by a sequence of right rotations from ¢;. Figure 3.4 shows this

notion,

Itz

Figure 3.4: Notion of ¢; < t3 .

The set of compléte binary trees of size n with the Tamari order is in fact a lattice. For example, Figure

3.5 shows the Tamari lattice forn = 3 and n = 4.

&

A D

& e .\

b
5%

Figure 3.5: The Tamari lattice of complete binary trees
for n = 3 (left) and n = 4 (right).

«
&
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Sine complete binary trees correspond bijectively to binary trees, we clearly have an equivalent descrip-

tion of Tamari lattice in terms of the later. Thus we get the representations in Figure 3.6.

Figure 3.6: The Tamari lattice of binary trees
for n = 3 (left) and n = 4 (right).

39 Tamari poset on Dyck paths

Consider two Dyck paths d; and dp of the same size. We say that da covers d; if and only if there exists
in d; an east step a, and a south step b following a, such that ds is obtained from d; by swapping o and

F, where F is the shortest factor of d; that begins with b and is a Dyck path. Figure 3.7 shows this notion.

(=
s
7’

Figure 3.7: Notion of d; < ds .

The set of Dyck paths of size n with the Tamari order is in fact a lattice. For example, Figure 3.8
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represents the Tamari lattice forn = 3 and n = 4.

A ks

\1
L /- L bR

|
!

Figure 3.8: The Tamari lattice of Dyck paths
for n = 3 (left) and n = 4 (right).

34 Tamari poset on Dyck words

Consider two Dyck words w; and ws of the same length. We say that wq covers w, if and only if there
exists in w; a letter S following E, such that ws is obtained by changing the place of E and F, where
F' is the shortest factor of w;y that begins with .S, and is a Dyck word. For example the two Dyck words
wy = SSSEESSEESEE and wy = SSSESSEEESEE, which correspond to the Dyck paths of

Figure 3.5, illustrates the notion of w; «¢ w2 :

SSSEESSEESEE < SSSESSEEESEE.
F F

The set of Dyck words of size n with the Tamari order is in fact a lattice.
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Clearly, one can transfer the poset structure from that on Dyck paths to any other Catalan family using
an explicit bijection. Hence, for D, as a set of Dyck paths and C,, as a set of other Catalan objects, one
sets
6(a) 2 6(B) ifandonlyif ao=p
fora,f € D, , and 0: D, — C, abijection.

However, a direct description of the order on C,, is often preferred.

For example, let 7" be a triangulation of a polygon (which is counted by Catalan numbers) such as Figure
3.9. Within 7', the diagonal ¢ is the diagonal of some quadrilateral. Then there is a new triangulation

T’ which is obtained by replacing the diagonal ¢ with the other diagonal of that quadrilateral. This local
move is called an edge flip, and we say that 7" is obtained from T by flipping the diagonal ¢.

< oo

edge flip

T T

Figure 3.9: Two triangulations 7" and 7" are being related by an edge fiip.

This case is interesting since it plays a crucial role in the origin of the notion of "cluster algebras"(see
[16] for more details).

Then the question emerges that,

Is there some systematic way to think about "flips" in the Tamari poset of Catalan objects?

In Chapter 5, we are going to introduce what is the Tamari order for the notion of "tubing", as a main

goal of the current study.






CHAPTER IV

PARKING FUNCTIONS ON CATALAN OBJECTS

In this chapter we introduce the notion of parking functions, and some of their properties. Here our
interest is in associating parking functions to Catalan objects. Hence we can identify a parking function
with a labeled Dyck path, Dyck word, and complete binary tree. The bijection between parking functions
and labeled Dyck paths lead to the creation of labeled intervals in the Tamari lattice of Dyck paths. On

the other hand, we try to enumerate parking functions with zeta polynomial.

4.1 Parking functions

The notion of "parking function" was introduced by Konheim and Weiss. In [9], they proved that the

number of parking functions of length n is
(n+1)~"L.

Later, other combinatorialists gave some methods of counting the number of parking functions of length
n, or introduced bijections relating parking functions to other combinatorial structures. The parking
problem was described in [2] as the following story:

"Imagine a one-way street with n parking spots and a cliff at its end. We’ll give the first parking spot
number 1, the next one number 2, etc..., and the last one number n. At first all of them are free and
there are n cars on the street, and they would all like to park. Every car has a parking preference, and we
record the preferences in a sequence, for example, if n = 3, the sequence (2, 1, 1) means that the first car
would like to park at spot number 2, the second car prefers parking spot number 1, and the last car would
also like to park at number 1. The street is narrow, so there is no way to back up. Now each three car
in the street start to park on its preferred parking spot; if it is free, it parks there, and if not, it can goes
to the first available spot. We call a sequence a parking function (of length ) if all cars find a parking

spot at the end and none fall off the cliff". For example, the sequence (2, 1, 1) is a parking function (of
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length 3), while the sequence (1, 3, 3) is not, because car number 1 parks at spot number 1 as he prefers,
car number 2 parks at spot number 3 and finally when car number 3 arrives to spot number 3 which is
his preference, he finds it full and falls. In the other form of writing<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>